1
|
Zhu H, Chen R, Xu Y, Gong W, Miao M, Sun Y, Mei J. An ERF Gene DcERF3 of Dendrobium catenatum Improves Salt Tolerance in Arabidopsis. Mol Biotechnol 2025:10.1007/s12033-025-01414-8. [PMID: 40014256 DOI: 10.1007/s12033-025-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
The ethylene-responsive transcription factors (ERFs) perform pivotal regulatory functions in plant growth, development, and stress responses. Nonetheless, there is limited research on the functional characterization of ERFs in the medicinal orchid, Dendrobium catenatum. Here, we identified a salt-induced ERF gene DcERF3 from a D. catenatum cultivar Tiepi. DcERF3 comprises 186 amino acids and has a confirmed molecular weight of 21 kDa. It possesses a conserved AP2/ERF domain and displays a strong affiliation with the evolutionary lineage of other characterized ERFs. Analysis of expression patterns indicated that DcERF3 exhibits predominant expression in stems and roots, with considerably higher levels than in other tissues, and it demonstrated significant upregulation in response to treatments involving salt, ETH, PEG, and SA. The DcERF3-YFP protein localizes to the nucleus, and DcERF3 displays distinct transcriptional activation characteristics. Overexpressing DcERF3 led to an increased lateral root formation and enhanced tolerance to salt stress in Arabidopsis. Furthermore, the activities of antioxidant enzymes, along with the stress-responsive genes, were significantly induced in transgenic plants when subjected to salt stress. This study aims to investigate the function and role of DcERF3 in D. catenatum to establish a foundation for examining its involvement in lateral root formation and response to salt stress.
Collapse
Affiliation(s)
- Huimin Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruoxi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yemin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wumeng Gong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meng Miao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuqiang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jun Mei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Han T, Khan MA, Wang Y, Tan W, Li C, Ai P, Zhao W, Li Z, Wang Z. Identification of SDG gene family members and exploration of flowering related genes in different cultivars of chrysanthemums and their wild ancestors. BMC PLANT BIOLOGY 2024; 24:813. [PMID: 39210253 PMCID: PMC11360836 DOI: 10.1186/s12870-024-05465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The SET domain genes (SDGs) are significant contributors to various aspects of plant growth and development, mainly includes flowering, pollen development, root growth, regulation of the biological clock and branching patterns. To clarify the biological functions of the chrysanthemum SDG family, the SDG family members of four chrysanthemum cultivars and three related wild species were identified; their physical and chemical properties, protein domains and conserved motifs were predicted and analyzed. The results showed that 59, 67, 67, 102, 106, 114, and 123 SDGs were identified from Chrysanthemum nankingense, Chrysanthemum lavandulifolium, Chrysanthemum seticuspe, Chrysanthemum × morifolium cv. 'Hechengxinghuo', 'Zhongshanzigui', 'Quanxiangshuichang' and 'Jinbeidahong', respectively. The SDGs were divided into 5-7 subfamilies by cluster analysis; different conserved motifs were observed in particular families. The SDGs of C. lavandulifolium and C. seticuspe were distributed unevenly on 9 chromosomes. SDG promoters of different species include growth and development, photo-response, stress response and hormone responsive elements, among them, the cis-acting elements related to MeJA response had the largest proportion. The expression of chrysanthemum SDG genes was observed for most variable selected genes which has close association with important Arabidopsis thaliana genes related to flowering regulation. The qPCR results showed that the expression trend of SDG genes varied in different tissues at different growth stages with high expression in the flowering period. The ClSDG29 showed higher expression in the flower and bud tissues, which indicate that ClSDG29 might be associated with flowering regulation in chrysanthemum. In summary, the results of this study can provide a basis for subsequent research on chrysanthemum flowering time regulation.
Collapse
Affiliation(s)
- Ting Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Yiming Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenchao Tan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Chenran Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
Wang Q, Wang L, Cheng H, Wang S, Li J, Zhang D, Zhou L, Chen S, Chen F, Jiang J. Two B-box proteins orchestrate vegetative and reproductive growth in summer chrysanthemum. PLANT, CELL & ENVIRONMENT 2024; 47:2923-2935. [PMID: 38629334 DOI: 10.1111/pce.14919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 07/12/2024]
Abstract
Floral transition, the switch from vegetative to reproductive growth, is extremely important for the growth and development of flowering plants. In the summer chrysanthemum, CmBBX8, a member of the subgroup II B-box (BBX) family, positively regulates the transition by physically interacting with CmERF3 to inhibit CmFTL1 expression. In this study, we show that CmBBX5, a B-box subgroup I member comprising two B-boxes and a CCT domain, interacts with CmBBX8. This interaction suppresses the recruitment of CmBBX8 to the CmFTL1 locus without affecting its transcriptional activation activity. CmBBX5 overexpression led to delayed flowering under both LD (long-day) and SD (short-day) conditions, while lines expressing the chimeric repressor gene-silencing (CmBBX5-SRDX) exhibited the opposite phenotype. Subsequent genetic evidence indicated that in regulating flowering, CmBBX5 is partially dependent on CmBBX8. Moreover, during the vegetative growth period, levels of CmBBX5 expression were found to exceed those of CmBBX8. Collectively, our findings indicate that both CmERF3 and CmBBX5 interact with CmBBX8 to dampen the regulation of CmFTL1 via distinct mechanisms, which contribute to preventing the premature flowering of summer chrysanthemum.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hua Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Deng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
5
|
Yu Z, Chen X, Li Y, Shah SHA, Xiao D, Wang J, Hou X, Liu T, Li Y. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression. PLANT PHYSIOLOGY 2024; 195:986-1004. [PMID: 38269601 DOI: 10.1093/plphys/kiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
APETALA2/ethylene responsive factors respond to ethylene and participate in many biological and physiological processes, such as plant morphogenesis, stress resistance, and hormone signal transduction. Ethylene responsive factor 070 (BcERF070) is important in flowering. However, the underlying molecular mechanisms of BcERF070 in floral transition in response to ethylene signaling have not been fully characterized. Herein, we explored the function of BcERF070 in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Ethylene treatment induced BcERF070 expression and delayed flowering in Pak-choi. Silencing of BcERF070 induced flowering in Pak-choi. BcERF070 interacted with major latex protein-like 328 (BcMLP328), which forms a complex with helix-loop-helix protein 30 (BcbHLH30) to enhance the transcriptional activity of BcbHLH30 on LEAFY (BcLFY), ultimately promoting flowering. However, BcERF070 impaired the BcMLP328-BcbHLH30 complex activation of LEAFY (BcLFY), ultimately inhibiting flowering in Pak-choi. BcERF070 directly promoted the expression of the flowering inhibitor gene B-box 29 (BcBBX29) and delayed flowering by reducing FLOWERING LOCUS T (BcFT) expression. These results suggest that BcERF070 mediates ethylene-reduced flowering by impairing the BcMLP328-BcbHLH30 complex activation of BcLFY and by directly promoting the gene expression of the flowering inhibition factor BcBBX29 to repress BcFT expression. The findings contribute to understanding the molecular mechanisms underlying floral transition in response to ethylene in plants.
Collapse
Affiliation(s)
- Zhanghong Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoshan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sayyed Hamad Ahmad Shah
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Hao J, Xu D, Wang C, Cao Q, Zhao Q, Xie M, Zhang H, Zhang L. Phylogeny and expression patterns of ERF genes that are potential reproductive inducers in hybrid larch. BMC Genomics 2024; 25:288. [PMID: 38500084 PMCID: PMC10946173 DOI: 10.1186/s12864-024-10188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Larch is an important component of northern forests and a major cultivated tree species in restoration of forest cover using improved seed material. In recent years, the continuous low seed production has severely affected the production of improved variety seedlings and natural regeneration. However, research on the reproductive growth of gymnosperms is extremely scarce. RESULTS In this study, based on differential transcriptome analysis of two asexual reproductive phases, namely high-yield and low-yield, we further screened 5 ERF family genes that may affect the reproductive development of larch. We analyzed their genetic relationships and predicted their physicochemical properties. The expression patterns of these genes were analyzed in different tissues, developmental stages, hormone treatments, and environmental conditions in hybrid larch. CONCLUSION The results showed that all 5 genes were induced by low temperature and ABA, and their expression patterns in different tissues suggested a suppressive role in the development of female cones in larch. Among them, LkoERF3-like1 and LkoERF071 may be involved in the flowering age pathway. This study enriches the scarce research on reproductive development in gymnosperms and provides a theoretical basis and research direction for regulating the reproductive development of larch in seed orchards.
Collapse
Affiliation(s)
- Junfei Hao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| | - Daixi Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| | - Chen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| | - Qing Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| | - Qingrong Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| | - Miaomiao Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China.
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China.
| |
Collapse
|
7
|
Su J, Zeng J, Wang S, Zhang X, Zhao L, Wen S, Zhang F, Jiang J, Chen F. Multi-locus genome-wide association studies reveal the dynamic genetic architecture of flowering time in chrysanthemum. PLANT CELL REPORTS 2024; 43:84. [PMID: 38448703 DOI: 10.1007/s00299-024-03172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
KEY MESSAGE The dynamic genetic architecture of flowering time in chrysanthemum was elucidated by GWAS. Thirty-six known genes and 14 candidate genes were identified around the stable QTNs and QEIs, among which ERF-1 was highlighted. Flowering time (FT) adaptation is one of the major breeding goals in chrysanthemum, a multipurpose ornamental plant. In order to reveal the dynamic genetic architecture of FT in chrysanthemum, phenotype investigation of ten FT-related traits was conducted on 169 entries in 2 environments. The broad-sense heritability of five non-conditional FT traits, i.e., budding (FBD), visible coloring (VC), early opening (EO), full-bloom (OF) and decay period (DP), ranged from 56.93 to 84.26%, which were higher than that of the five derived conditional FT traits (38.51-75.13%). The phenotypic variation coefficients of OF_EO and DP_OF were relatively large ranging from 30.59 to 36.17%. Based on 375,865 SNPs, the compressed variance component mixed linear model 3VmrMLM was applied for a multi-locus genome-wide association study (GWAS). As a result, 313 quantitative trait nucleotides (QTNs) were identified for the non-conditional FT traits in single-environment analysis, while 119 QTNs and 67 QTN-by-environment interactions (QEIs) were identified in multi-environment analysis. As for the conditional traits, 343 QTNs were detected in single-environment analysis, and 119 QTNs and 83 QEIs were identified in multi- environment analysis. Among the genes around stable QTNs and QEIs, 36 were orthologs of known FT genes in Arabidopsis and other plants; 14 candidates were mined by combining the transcriptomics data and functional annotation, including ERF-1, ACA10, and FOP1. Furthermore, the haplotype analysis of ERF-1 revealed six elite accessions with extreme FBD. Our findings contribute to the understanding of dynamic genetic architecture of FT and provide valuable resources for future chrysanthemum molecular breeding programs.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Junwei Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Siyue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Limin Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Shiyun Wen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
8
|
Su J, Lu Z, Zeng J, Zhang X, Yang X, Wang S, Zhang F, Jiang J, Chen F. Multi-locus genome-wide association study and genomic prediction for flowering time in chrysanthemum. PLANTA 2023; 259:13. [PMID: 38063918 DOI: 10.1007/s00425-023-04297-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Multi-locus GWAS detected several known and candidate genes responsible for flowering time in chrysanthemum. The associations could greatly increase the predictive ability of genome selection that accelerates the possible application of GS in chrysanthemum breeding. Timely flowering is critical for successful reproduction and determines the economic value for ornamental plants. To investigate the genetic architecture of flowering time in chrysanthemum, a multi-locus genome-wide association study (GWAS) was performed using a collection of 200 accessions and 330,710 single-nucleotide polymorphisms (SNPs) via 3VmrMLM method. Five flowering time traits including budding (FBD), visible colouring (VC), early opening (EO), full-bloom (OF) and senescing (SF) stages, plus five derived conditional traits were recorded in two environments. Extensive phenotypic variations were observed for these flowering time traits with coefficients of variation ranging from 6.42 to 38.27%, and their broad-sense heritability ranged from 71.47 to 96.78%. GWAS revealed 88 stable quantitative trait nucleotides (QTNs) and 93 QTN-by-environment interactions (QEIs) associated with flowering time traits, accounting for 0.50-8.01% and 0.30-10.42% of the phenotypic variation, respectively. Amongst the genes around these stable QTNs and QEIs, 21 and 10 were homologous to known flowering genes in Arabidopsis; 20 and 11 candidate genes were mined by combining the functional annotation and transcriptomics data, respectively, such as MYB55, FRIGIDA-like, WRKY75 and ANT. Furthermore, genomic selection (GS) was assessed using three models and seven unique marker datasets. We found the prediction accuracy (PA) using significant SNPs identified by GWAS under SVM model exhibited the best performance with PA ranging from 0.90 to 0.95. Our findings provide new insights into the dynamic genetic architecture of flowering time and the identified significant SNPs and candidate genes will accelerate the future molecular improvement of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhaowen Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Junwei Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiuwei Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Siyue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China.
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|