1
|
McShan AC, Flores-Solis D, Sun Y, Garfinkle SE, Toor JS, Young MC, Sgourakis NG. Conformational plasticity of RAS Q61 family of neoepitopes results in distinct features for targeted recognition. Nat Commun 2023; 14:8204. [PMID: 38081856 PMCID: PMC10713829 DOI: 10.1038/s41467-023-43654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The conformational landscapes of peptide/human leucocyte antigen (pHLA) protein complexes encompassing tumor neoantigens provide a rationale for target selection towards autologous T cell, vaccine, and antibody-based therapeutic modalities. Here, using complementary biophysical and computational methods, we characterize recurrent RAS55-64 Q61 neoepitopes presented by the common HLA-A*01:01 allotype. We integrate sparse NMR restraints with Rosetta docking to determine the solution structure of NRASQ61K/HLA-A*01:01, which enables modeling of other common RAS55-64 neoepitopes. Hydrogen/deuterium exchange mass spectrometry experiments alongside molecular dynamics simulations reveal differences in solvent accessibility and conformational plasticity across a panel of common Q61 neoepitopes that are relevant for recognition by immunoreceptors. Finally, we predict binding and provide structural models of NRASQ61K antigens spanning the entire HLA allelic landscape, together with in vitro validation for HLA-A*01:191, HLA-B*15:01, and HLA-C*08:02. Our work provides a basis to delineate the solution surface features and immunogenicity of clinically relevant neoepitope/HLA targets for cancer therapy.
Collapse
Affiliation(s)
- Andrew C McShan
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA, 30318, USA
| | - David Flores-Solis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 37075, Göttingen, Germany
| | - Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel E Garfinkle
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jugmohit S Toor
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Michael C Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Mondal A, Sen U, Roy N, Muthukumar V, Sahoo SK, Bose B, Paira P. DNA targeting half sandwich Ru(II)- p-cymene-N^N complexes as cancer cell imaging and terminating agents: influence of regioisomers in cytotoxicity. Dalton Trans 2021; 50:979-997. [PMID: 33355328 DOI: 10.1039/d0dt03107k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
For diagnosing and annihilating cancer in the human body, herein, we have adopted a one pot convenient synthetic protocol to synthesize a library of half sandwich Ru(ii)-p-cymene-N^N complexes under continuous sonication and isolated their regioisomers by preparative thin layer chromatography followed by justification of stability using DFT. The present work has resulted in a library of ruthenium arene complexes and their isolated regioisomers following environmentally benign green processes and their screening of anticancer activity in terms of cytotoxicity and selectivity against cancer cell lines where [(η6-p-cymene)RuCl{2-(5,6-dichloro-1H-benzo[d]imidazole-2-yl)quinolone}] (11j) has been elicited to be significantly more potent as well as selective in Caco-2 and HeLa cell lines than the normal HEK-293 cell line compared to cisplatin and it has even shown marked cytotoxicity against the more aggressive HT-29 colorectal cancer cell line being capable of producing oxidative stress or arresting the cell cycle. Moreover, these types of Ru(ii)-arene complexes exhibited excellent binding efficacy with DNA and the compounds [(η6-p-cymene)RuCl{5-chloro-2-(6-(4-chlorophenyl)pyridin-2-yl)benzo[d]thiazole}]PF6 (8l4), [(η6-p-cymene)Ru-2-(6-(benzofuran-2-yl)pyridin-2-yl)-5-chlorobenzo[d]thiazole (8l9) and [(η6-p-cymene)RuCl{2-(6-nitro-1H-benzo[d]imidazol-2-yl)quinolone}]Cl (11f') and might be applied for cancer theranostic treatment due to their good fluorescence properties and remarkable potency.
Collapse
Affiliation(s)
- Ashaparna Mondal
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Utsav Sen
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Venkatesan Muthukumar
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Suban Kumar Sahoo
- Department of Applied Chemistry, S.V. National Institute of Technology (SVNIT), Ichchanath, Surat, Gujrat-395 007, India.
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| |
Collapse
|
4
|
Aleksanyan IL, Hambardzumyan LP. Synthesis and Transformations of 4-Hydroxy-2-methylquinoline-6-carbohydrazide. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019020209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Aleksanyan IL, Hambardzumyan LP. Syntheses Based on 4-(2-Hydroxy-4-methylquinolin-3-yl)butan-2-one Thiosemicarbazones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
George RF, Samir EM, Abdelhamed MN, Abdel-Aziz HA, Abbas SES. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg Chem 2018; 83:186-197. [PMID: 30380447 DOI: 10.1016/j.bioorg.2018.10.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023]
Abstract
Quinoline derivatives 2, 3, quinolinyl based pyrazolines 4a,b, 5 and quinolinyl pyrazolinyl thiazole hybrids 6a-d, 7a-c and 8a-d were synthesized and screened for their anti-proliferative activity against MCF-7, HeLa and DLD1 cancer cell lines as well as normal fibroblast WI-38. Most of the tested compounds showed promising anticancer activity in addition to their safety towards the normal cell line. Eight compounds eliciting superior cytotoxicity against DLD1 and safe to the normal cell line 2, 3, 5, 6a, 6b, 7b, 7c and 8a were evaluated for their efficacy as EGFR inhibitors. They revealed inhibitory activity at nanomolar level especially compounds 6b, 2 and 7c with IC50 (31.80, 37.07 and 42.52 nM) in comparison to Gefitinib (IC50 = 29.16 nM).
Collapse
Affiliation(s)
- Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Eman M Samir
- Organic Chemistry Department, National Organization For Drug & Control Research, Cairo, Egypt
| | | | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, P.O. Box 12622, Giza, Egypt
| | - Safinaz E-S Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
7
|
Pejović A, Drabowicz J, Cieslak M, Kazmierczak-Baranska J, Królewska-Golińska K. Synthesis, characterization and anticancer activity of novel ferrocene containing quinolinones: 1-Allyl-2-ferrocenyl-2,3-dihydroquinolin-4(1H)-ones and 1-allyl-2-ferrocenylquinolin-4(1H)-ones. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Abstract
Metastatic melanoma is associated with poor outcome and is largely refractory to the historic standard of care. In recent years, the development of targeted small-molecule inhibitors and immunotherapy has revolutionised the care and improved the overall survival of these patients. Therapies targeting BRAF and MEK to block the mitogen-activated protein kinase (MAPK) pathway were the first to show unprecedented clinical responses. Following these encouraging results, antibodies targeting immune checkpoint inhibition molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death (PD)-1, and PD-ligand1(PD-L1) demonstrated sustained tumour regression in a significant subset of patients by enabling an anti-tumour immunologic response. Despite these landmark changes in practice, the majority of patients are either intrinsically resistant or rapidly acquire resistance to MAPK pathway inhibitors and immune checkpoint blockade treatment. The lack of response can be driven by mutations and non-mutational events in tumour cells, as well as by changes in the surrounding tumour microenvironment. Common resistance mechanisms bypass the dependence of tumour cells on initial MAPK pathway driver mutations during targeted therapy, and permit evasion of the host immune system to allow melanoma growth and survival following immunotherapy. This highlights the requirement for personalised treatment regimens that take into account patient-specific genetic and immunologic characteristics. Here we review the mechanisms by which melanomas display intrinsic resistance or acquire resistance to targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Matthew Winder
- Skin Cancer and Ageing, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Amaya Virós
- Skin Cancer and Ageing, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK. .,Salford Royal NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
9
|
Bingul M, Tan O, Gardner CR, Sutton SK, Arndt GM, Marshall GM, Cheung BB, Kumar N, Black DS. Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety. Molecules 2016; 21:molecules21070916. [PMID: 27428941 PMCID: PMC6273134 DOI: 10.3390/molecules21070916] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022] Open
Abstract
Identification of the novel (E)-N′-((2-chloro-7-methoxyquinolin-3-yl)methylene)-3-(phenylthio)propanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 19–26 were prepared from the corresponding quinoline hydrazones and substituted carboxylic acids using EDC-mediated peptide coupling reactions. Further modification of the parent compound 18 was achieved by replacement of the quinoline moiety with other aromatic systems. All the newly synthesized compounds were evaluated for their anti-cancer activity against the SH-SY5Y and Kelly neuroblastoma cell lines, as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Analogues 19 and 22 significantly reduced the cell viability of neuroblastoma cancer cells with micromolar potency and significant selectivity over normal cells. The quinoline hydrazide 22 also induced G1 cell cycle arrest, as well as upregulation of the p27kip1 cell cycle regulating protein.
Collapse
Affiliation(s)
- Murat Bingul
- School of Chemistry, The University of New South Wales Australia, Sydney, NSW 2052, Australia.
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales Australia, Sydney, NSW 2031, Australia.
| | - Owen Tan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales Australia, Sydney, NSW 2031, Australia.
| | - Christopher R Gardner
- School of Chemistry, The University of New South Wales Australia, Sydney, NSW 2052, Australia.
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales Australia, Sydney, NSW 2031, Australia.
| | - Selina K Sutton
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales Australia, Sydney, NSW 2031, Australia.
| | - Greg M Arndt
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales Australia, Sydney, NSW 2031, Australia.
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales Australia, Sydney, NSW 2052, Australia.
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales Australia, Sydney, NSW 2031, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia.
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, The University of New South Wales Australia, Sydney, NSW 2031, Australia.
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales Australia, Sydney, NSW 2052, Australia.
| | - David StC Black
- School of Chemistry, The University of New South Wales Australia, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Posch C, Vujic I, Monshi B, Sanlorenzo M, Weihsengruber F, Rappersberger K, Ortiz-Urda S. Searching for the Chokehold of NRAS Mutant Melanoma. J Invest Dermatol 2016; 136:1330-1336. [PMID: 27160069 DOI: 10.1016/j.jid.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/19/2022]
Abstract
Up to 18% of melanomas harbor mutations in the neuroblastoma rat-sarcoma homolog (NRAS). Yet, decades of research aimed to interfere with oncogenic RAS signaling have been largely disappointing and have not resulted in meaningful clinical outputs. Recent advances in disease modeling, structural biology, and an improved understanding of RAS cycling as well as RAS signaling networks have renewed hope for developing strategies to selectively block hyperactive RAS function. This review discusses direct and indirect blocking of activated RAS with a focus on current and potential future therapeutic approaches for NRAS mutant melanoma.
Collapse
Affiliation(s)
- Christian Posch
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria.
| | - Igor Vujic
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Babak Monshi
- Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Martina Sanlorenzo
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Felix Weihsengruber
- Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Klemens Rappersberger
- Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Susana Ortiz-Urda
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Jenkins RW, Sullivan RJ. NRAS mutant melanoma: an overview for the clinician for melanoma management. Melanoma Manag 2016; 3:47-59. [PMID: 30190872 PMCID: PMC6097550 DOI: 10.2217/mmt.15.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and the incidence continues to rise in the United States and worldwide. Activating mutations in RAS oncogenes are found in roughly a third of all human cancers. Mutations in NRAS occur in approximately a fifth of cutaneous melanomas and are associated with aggressive clinical behavior. Cells harboring oncogenic NRAS mutations exhibit activation of multiple signaling cascades, including PI3K/Akt, MEK-ERK and RAL, which collectively stimulate cancer growth. While strategies to target N-Ras itself have proven ineffective, targeting one or more N-Ras effector pathways has shown promise in preclinical models. Despite promising preclinical data, current therapies for NRAS mutant melanoma remain limited. Immune checkpoint inhibitors and targeted therapies for BRAF mutant melanoma are transforming the treatment of metastatic melanoma, but the ideal treatment for NRAS mutant melanoma remains unknown. Improved understanding of NRAS mutant melanoma and relevant N-Ras effector signaling modules will be essential to develop new treatment strategies.
Collapse
Affiliation(s)
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
12
|
Feng Y, Pinkerton AB, Hulea L, Zhang T, Davies MA, Grotegut S, Cheli Y, Yin H, Lau E, Kim H, De SK, Barile E, Pellecchia M, Bosenberg M, Li JL, James B, Hassig CA, Brown KM, Topisirovic I, Ronai ZA. SBI-0640756 Attenuates the Growth of Clinically Unresponsive Melanomas by Disrupting the eIF4F Translation Initiation Complex. Cancer Res 2015; 75:5211-8. [PMID: 26603897 DOI: 10.1158/0008-5472.can-15-0885] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/21/2015] [Indexed: 01/04/2023]
Abstract
Disrupting the eukaryotic translation initiation factor 4F (eIF4F) complex offers an appealing strategy to potentiate the effectiveness of existing cancer therapies and to overcome resistance to drugs such as BRAF inhibitors (BRAFi). Here, we identified and characterized the small molecule SBI-0640756 (SBI-756), a first-in-class inhibitor that targets eIF4G1 and disrupts the eIF4F complex. SBI-756 impaired the eIF4F complex assembly independently of mTOR and attenuated growth of BRAF-resistant and BRAF-independent melanomas. SBI-756 also suppressed AKT and NF-κB signaling, but small-molecule derivatives were identified that only marginally affected these pathways while still inhibiting eIF4F complex formation and melanoma growth, illustrating the potential for further structural and functional manipulation of SBI-756 as a drug lead. In the gene expression signature patterns elicited by SBI-756, DNA damage, and cell-cycle regulatory factors were prominent, with mutations in melanoma cells affecting these pathways conferring drug resistance. SBI-756 inhibited the growth of NRAS, BRAF, and NF1-mutant melanomas in vitro and delayed the onset and reduced the incidence of Nras/Ink4a melanomas in vivo. Furthermore, combining SBI-756 and a BRAFi attenuated the formation of BRAFi-resistant human tumors. Taken together, our findings show how SBI-756 abrogates the growth of BRAF-independent and BRAFi-resistant melanomas, offering a preclinical rationale to evaluate its antitumor effects in other cancers.
Collapse
Affiliation(s)
- Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Anthony B Pinkerton
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Laura Hulea
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Canada. Department of Oncology, McGill University, Montréal, Canada
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, NCI, Bethesda, Maryland
| | - Michael A Davies
- Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Stefan Grotegut
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yann Cheli
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Hongwei Yin
- Cancer and Cell Biology Division, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Eric Lau
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Hyungsoo Kim
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Surya K De
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Elisa Barile
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Maurizio Pellecchia
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Marcus Bosenberg
- Departments of Dermatology and Pathology, Yale University, School of Medicine, New Haven, Connecticut
| | - Jian-Liang Li
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Brian James
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Christian A Hassig
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, NCI, Bethesda, Maryland
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Canada. Department of Oncology, McGill University, Montréal, Canada
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
13
|
Abstract
NRAS mutations in codons 12, 13, and 61 arise in 15-20 % of all melanomas. These alterations have been associated with aggressive clinical behavior and a poor prognosis. Until recently, there has been a paucity of promising genetically targeted therapy approaches for NRAS-mutant melanoma (and RAS-mutant malignancies in general). MEK inhibitors, particularly binimetinib, have shown activity in this cohort. Based on pre-clinical and early clinical studies, combining MEK inhibitors with agents inhibiting the cell cycling and the PI3K-AKT pathway appears to provide additional benefit. In particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future, and is the most promising genetically targeted treatment strategy for NRAS-mutant melanoma developed to date. In addition, immune-based therapies have shown increasing activity in advanced melanoma and may be particularly effective in those with NRAS mutations. Combination strategies of immune and targeted therapies may also play a role in the future although clinical trials testing these approaches are in early stages.
Collapse
Affiliation(s)
- Douglas B Johnson
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA,
| | | |
Collapse
|
14
|
Theodosakis N, Micevic G, Kelly DP, Bosenberg M. Mitochondrial function in melanoma. Arch Biochem Biophys 2014; 563:56-9. [PMID: 24997363 DOI: 10.1016/j.abb.2014.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
Melanoma is the most lethal form of skin cancer and its incidence is rapidly rising. Breakthroughs in the understanding of the basic biology of melanoma in the past decade have yielded several new treatments, and advances continue to be made on a variety of fronts. One such area involves the delineation of changes in mitochondria that occur during melanoma formation, and how these changes affect responses to therapy. In this review, we summarize recent developments on the multiple functions that mitochondria play in melanoma, and how these roles are currently being evaluated as new targets for clinical intervention.
Collapse
Affiliation(s)
- Nicholas Theodosakis
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States.
| | - Goran Micevic
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel P Kelly
- Sanford-Burnham Medical Research Institute, Lake Nona, FL, United States
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States; Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Johnson DB, Smalley KSM, Sosman JA. Molecular pathways: targeting NRAS in melanoma and acute myelogenous leukemia. Clin Cancer Res 2014; 20:4186-92. [PMID: 24895460 DOI: 10.1158/1078-0432.ccr-13-3270] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Successful targeting of specific oncogenic "driver" mutations with small-molecule inhibitors has represented a major advance in cancer therapeutics over the past 10 to 15 years. The most common activating oncogene in human malignancy, RAS (rat sarcoma), has proved to be an elusive target. Activating mutations in RAS induce mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase-AKT pathway signaling and drive malignant progression in up to 30% of cancers. Oncogenic NRAS mutations occur in several cancer types, notably melanoma, acute myelogenous leukemia (AML), and less commonly, colon adenocarcinoma, thyroid carcinoma, and other hematologic malignancies. Although NRAS-mutant tumors have been recalcitrant to targeted therapeutic strategies historically, newer agents targeting MAP/ERK kinase 1 (MEK1)/2 have recently shown signs of clinical efficacy as monotherapy. Combination strategies of MEK inhibitors with other targeted agents have strong preclinical support and are being evaluated in clinical trials. This review discusses the recent preclinical and clinical studies about the role of NRAS in cancer, with a focus on melanoma and AML.
Collapse
Affiliation(s)
- Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Keiran S M Smalley
- Departments of Molecular Oncology and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Jeffrey A Sosman
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
16
|
Barile E, De SK, Feng Y, Chen V, Yang L, Ronai Z, Pellecchia M. Synthesis and SAR studies of dual AKT/NF-κB inhibitors against melanoma. Chem Biol Drug Des 2013; 82:520-533. [PMID: 23790042 DOI: 10.1111/cbdd.12177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 01/13/2023]
Abstract
The protein Kinase B alpha (AKT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways are central regulators of cellular signaling events at the basis of tumor development and progression. Both pathways are often up-regulated in different tumor types including melanoma. We recently reported the identification of compound 1 (BI-69A11) as inhibitor of the AKT and the NF-κB pathways. Here, we describe SAR studies that led to novel fluorinated derivatives with increased cellular potency, reflected in efficient inhibition of AKT and IKKs. Selected compounds demonstrated effective toxicity on melanoma, breast, and prostate cell lines. Finally, a representative derivative showed promising efficacy in an in vivo melanoma xenograft model.
Collapse
Affiliation(s)
- Elisa Barile
- Sanford-Burnham Medical Research Institute, La Jolla, California, 92037, USA
| | - Surya K De
- Sanford-Burnham Medical Research Institute, La Jolla, California, 92037, USA
| | - Yongmei Feng
- Sanford-Burnham Medical Research Institute, La Jolla, California, 92037, USA
| | - Vida Chen
- Sanford-Burnham Medical Research Institute, La Jolla, California, 92037, USA
| | - Li Yang
- Sanford-Burnham Medical Research Institute, La Jolla, California, 92037, USA
| | - Ze'ev Ronai
- Sanford-Burnham Medical Research Institute, La Jolla, California, 92037, USA
| | - Maurizio Pellecchia
- Sanford-Burnham Medical Research Institute, La Jolla, California, 92037, USA
| |
Collapse
|