1
|
Mangoni AA, Zinellu A. Periostin and rheumatic diseases: early insights from a systematic review and meta-analysis. Clin Exp Med 2025; 25:75. [PMID: 40053143 DOI: 10.1007/s10238-025-01615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Periostin regulates angiogenesis, inflammation, and fibrosis, key processes in the pathophysiology of rheumatic diseases (RDs). However, its association with RDs has not been assessed. We conducted a systematic review and meta-analysis of studies reporting circulating periostin in RD patients and healthy controls. We searched electronic databases from inception to 30 November 2024 for relevant articles and assessed the risk of bias and the certainty of evidence using the JBI critical appraisal checklist and GRADE, respectively. In 12 eligible studies, there was a non-significant trend towards higher periostin concentrations in RD patients (standard mean difference, SMD = 0.46, 95% CI -0.07 to 0.98, p = 0.089; I2 = 94.2%, p < 0.001). The results were stable in sensitivity analysis. There were no significant associations between the SMD and age, male-to-female ratio, number of participants, or publication year. However, we observed significant periostin elevations in studies investigating systemic sclerosis and rheumatoid arthritis but not osteoarthritis. Significant periostin reductions were observed in studies investigating ankylosing spondylitis and dermatomyositis. Furthermore, the SMD was significant in studies conducted in America, but not Asia or Europe. Our study suggests significant periostin elevations in rheumatoid arthritis and systemic sclerosis. Such elevations may reflect a more pronounced dysregulation of angiogenesis and fibrosis when compared to other RDs. Further research is warranted to investigate periostin concentrations in a wide range of RDs with various inflammatory, angiogenic, and fibrotic features and whether periostin is useful for diagnosis, prognosis, and monitoring in this patient group (PROSPERO registration number: CRD42024623501).
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
2
|
Liu X, Janknecht R, Asadbeigi SN, Perry L, Naqash AR, Ding WQ, McBride JD. The Influence of Melanoma Extracellular Vesicles on Benign Melanocytes: A Role for PRAME in Modulation of the Tumor Microenvironment. J Invest Dermatol 2024:S0022-202X(24)02959-2. [PMID: 39608669 DOI: 10.1016/j.jid.2024.10.612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Melanoma is an aggressive skin cancer with a high tendency for metastasis and resistance to conventional therapies. This study explores the role of preferentially expressed antigen in melanoma (PRAME), a cancer-testis antigen, in melanoma progression, focusing on its function in melanoma-derived extracellular vesicles (EVs) and its impact on benign melanocytes. We show that PRAME is highly expressed in melanoma cell lines, tissues, and patient plasma and is present in EVs. These EVs transfer PRAME protein and mRNA to benign melanocytes, leading to significant alterations in gene expression, increased cell proliferation, and a more malignant phenotype. Knockout of PRAME in melanoma cells reduces these protumorigenic effects on melanocytes, emphasizing PRAME's role in EV-mediated communication. The detection of PRAME in plasma EVs suggests its potential as a biomarker for monitoring disease progression and therapy response, including in rare melanoma subtypes. These findings highlight PRAME as a key player in melanoma progression and suggest targeting PRAME-containing EVs as a potential therapeutic strategy to inhibit melanoma progression and metastasis.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Cancer Biology Research Program, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Sepideh Nikki Asadbeigi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lisa Perry
- Department of Hematology-Oncology, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Abdul-Rafeh Naqash
- Department of Hematology-Oncology, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Cancer Biology Research Program, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Jeffrey D McBride
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Cancer Biology Research Program, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
3
|
Jirapongwattana N, Thongchot S, Pongpaibul A, Trakarnsanga A, Quinn J, Thuwajit P, Thuwajit C, Edwards J. The combined tumour-based Fascin/Snail and stromal periostin reveals the effective prognosis prediction in colorectal cancer patients. PLoS One 2024; 19:e0304666. [PMID: 38935747 PMCID: PMC11210851 DOI: 10.1371/journal.pone.0304666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy cause of cancer-related mortality worldwide. Epithelial-mesenchymal transition (EMT) promotes cancer metastasis and a tumour-based Glasgow EMT score was associated with adverse clinical features and poor prognosis. In this study, the impact of using the established five tumour-based EMT markers consisting of E-cadherin (E-cad), β-catenin (β-cat), Snail, Zeb-1, and Fascin in combination with the stromal periostin (PN) on the prediction of CRC patients' prognosis were invesigated. Formalin-fixed paraffin-embedded tissues of 202 CRC patients were studies the expressions of E-cad, β-cat, Snail, Zeb-1, Fascin, and PN by immunohistochemistry. Individually, cytoplasmic Fascin (Fc), cytoplasmic Snail (Sc), nuclear Snail (Sn), stromal Snail (Ss), and stromal PN (Ps) were significantly associated with reduced survival. A combination of Ps with Fc, Fs, and Sn was observed in 2 patterns including combined Fc, Fs, and Ps (FcFsPs) and Fc, Sn, and Ps (FcSnPs). These combinations enhanced the prognostic power compared to individual EMT markers and were independent prognostic markers. As the previously established scoring method required five markers and stringent criteria, its clinical use might be limited. Therefore, using these novel combined prognostic markers, either FcFsPs or FcSnPs, may be useful in predicting CRC patient outcomes.
Collapse
Affiliation(s)
- Niphat Jirapongwattana
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atthaphorn Trakarnsanga
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jean Quinn
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
4
|
Marvin DL, Dijkstra J, Zulfiqar RM, Vermeulen M, Ten Dijke P, Ritsma L. TGF-β Type I Receptor Signaling in Melanoma Liver Metastases Increases Metastatic Outgrowth. Int J Mol Sci 2023; 24:ijms24108676. [PMID: 37240029 DOI: 10.3390/ijms24108676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Despite advances in treatment for metastatic melanoma patients, patients with liver metastasis have an unfavorable prognosis. A better understanding of the development of liver metastasis is needed. The multifunctional cytokine Transforming Growth Factor β (TGF-β) plays various roles in melanoma tumors and metastasis, affecting both tumor cells and cells from the surrounding tumor microenvironment. To study the role of TGF-β in melanoma liver metastasis, we created a model to activate or repress the TGF-β receptor pathway in vitro and in vivo in an inducible manner. For this, we engineered B16F10 melanoma cells to have inducible ectopic expression of a constitutively active (ca) or kinase-inactive (ki) TGF-β receptor I, also termed activin receptor-like kinase (ALK5). In vitro, stimulation with TGF-β signaling and ectopic caALK5 expression reduced B16F10 cell proliferation and migration. Contrasting results were found in vivo; sustained caALK5 expression in B16F10 cells in vivo increased the metastatic outgrowth in liver. Blocking microenvironmental TGF-β did not affect metastatic liver outgrowth of both control and caALK5 expressing B16F10 cells. Upon characterizing the tumor microenvironment of control and caALk5 expressing B16F10 tumors, we observed reduced (cytotoxic) T cell presence and infiltration, as well as an increase in bone marrow-derived macrophages in caALK5 expressing B16F10 tumors. This suggests that caALK5 expression in B16F10 cells induces changes in the tumor microenvironment. A comparison of newly synthesized secreted proteins upon caALK5 expression by B16F10 cells revealed increased secretion of matrix remodeling proteins. Our results show that TGF-β receptor activation in B16F10 melanoma cells can increase metastatic outgrowth in liver in vivo, possibly through remodeling of the tumor microenvironment leading to altered infiltration of immune cells. These results provide insights in the role of TGF-β signaling in B16F10 liver metastasis and could have implications regarding the use of TGF-β inhibitors for the treatment of melanoma patients with liver metastasis.
Collapse
Affiliation(s)
- Dieuwke L Marvin
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jelmer Dijkstra
- Oncode Institute and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Rabia M Zulfiqar
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Michiel Vermeulen
- Oncode Institute and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Laila Ritsma
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
5
|
Wang Z, An J, Zhu D, Chen H, Lin A, Kang J, Liu W, Kang X. Periostin: an emerging activator of multiple signaling pathways. J Cell Commun Signal 2022; 16:515-530. [PMID: 35412260 PMCID: PMC9733775 DOI: 10.1007/s12079-022-00674-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins are responsible for regulating the microenvironment, the behaviors of surrounding cells, and the homeostasis of tissues. Periostin (POSTN), a non-structural matricellular protein, can bind to many extracellular matrix proteins through its different domains. POSTN usually presents at low levels in most adult tissues but is highly expressed in pathological sites such as in tumors and inflamed organs. POSTN can bind to diverse integrins to interact with multiple signaling pathways within cells, which is one of its core biological functions. Increasing evidence shows that POSTN can activate the TGF-β, the PI3K/Akt, the Wnt, the RhoA/ROCK, the NF-κB, the MAPK and the JAK pathways to promote the occurrence and development of many diseases, especially cancer and inflammatory diseases. Furthermore, POSTN can interact with some pathways in an upstream and downstream relationship, forming complicated crosstalk. This article focuses on the interactions between POSTN and different signaling pathways in diverse diseases, attempting to explain the mechanisms of interaction and provide novel guidelines for the development of targeted therapies.
Collapse
Affiliation(s)
- Zhaoheng Wang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jiangdong An
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China
| | - Daxue Zhu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Haiwei Chen
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Aixin Lin
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jihe Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Wenzhao Liu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Xuewen Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| |
Collapse
|
6
|
Neuzillet C, Nicolle R, Raffenne J, Tijeras‐Raballand A, Brunel A, Astorgues‐Xerri L, Vacher S, Arbateraz F, Fanjul M, Hilmi M, Samain R, Klein C, Perraud A, Rebours V, Mathonnet M, Bièche I, Kocher H, Cros J, Bousquet C. Periostin- and podoplanin-positive cancer-associated fibroblast subtypes cooperate to shape the inflamed tumor microenvironment in aggressive pancreatic adenocarcinoma. J Pathol 2022; 258:408-425. [PMID: 36102377 PMCID: PMC9828775 DOI: 10.1002/path.6011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/08/2022] [Accepted: 09/10/2022] [Indexed: 01/19/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are orchestrators of the pancreatic ductal adenocarcinoma (PDAC) microenvironment. Previously we described four CAF subtypes with specific molecular and functional features. Here, we have refined our CAF subtype signatures using RNAseq and immunostaining with the goal of defining bioinformatically the phenotypic stromal and tumor epithelial states associated with CAF diversity. We used primary CAF cultures grown from patient PDAC tumors, human data sets (in-house and public, including single-cell analyses), genetically engineered mouse PDAC tissues, and patient-derived xenografts (PDX) grown in mice. We found that CAF subtype RNAseq signatures correlated with immunostaining. Tumors rich in periostin-positive CAFs were significantly associated with shorter overall survival of patients. Periostin-positive CAFs were characterized by high proliferation and protein synthesis rates and low α-smooth muscle actin expression and were found in peri-/pre-tumoral areas. They were associated with highly cellular tumors and with macrophage infiltrates. Podoplanin-positive CAFs were associated with immune-related signatures and recruitment of dendritic cells. Importantly, we showed that the combination of periostin-positive CAFs and podoplanin-positive CAFs was associated with specific tumor microenvironment features in terms of stromal abundance and immune cell infiltrates. Podoplanin-positive CAFs identified an inflammatory CAF (iCAF)-like subset, whereas periostin-positive CAFs were not correlated with the published myofibroblastic CAF (myCAF)/iCAF classification. Taken together, these results suggest that a periostin-positive CAF is an early, activated CAF, associated with aggressive tumors, whereas a podoplanin-positive CAF is associated with an immune-related phenotype. These two subpopulations cooperate to define specific tumor microenvironment and patient prognosis and are of putative interest for future therapeutic stratification of patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cindy Neuzillet
- Department of Medical Oncology, Institut CurieUniversité Versailles Saint‐Quentin, Paris SaclaySaint‐CloudFrance,UMR144, Institut CurieParisFrance
| | - Rémy Nicolle
- INSERM U1149, Centre de Recherche sur l'InflammationParisFrance
| | - Jérôme Raffenne
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| | | | - Alexia Brunel
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| | | | - Sophie Vacher
- Department of GeneticsInstitut Curie, PSL Research UniversityParisFrance
| | - Floriane Arbateraz
- Centre d'Histologie Imagerie et Cytométrie (CHIC), U1138 Centre de Recherche des Cordeliers (CRC)ParisFrance
| | - Marjorie Fanjul
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| | - Marc Hilmi
- Department of Medical Oncology, Institut CurieUniversité Versailles Saint‐Quentin, Paris SaclaySaint‐CloudFrance
| | - Rémi Samain
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| | - Christophe Klein
- Centre d'Histologie Imagerie et Cytométrie (CHIC), U1138 Centre de Recherche des Cordeliers (CRC)ParisFrance
| | - Aurélie Perraud
- Department of Digestive SurgeryUniversity Hospital of LimogesLimogesFrance,INSERM UMLR‐1308University of LimogesLimogesFrance
| | - Vinciane Rebours
- INSERM U1149, Centre de Recherche sur l'InflammationParisFrance,Department of PancreatologyBeaujon Hospital (APHP)Clichy‐La‐GarenneFrance
| | - Muriel Mathonnet
- Department of Digestive SurgeryUniversity Hospital of LimogesLimogesFrance,INSERM UMLR‐1308University of LimogesLimogesFrance
| | - Ivan Bièche
- Department of GeneticsInstitut Curie, PSL Research UniversityParisFrance
| | - Hemant Kocher
- Centre for Tumour Biology, Barts Cancer Institute ‐ a CR‐UK Centre of ExcellenceQueen Mary University of LondonLondonUK
| | - Jérôme Cros
- INSERM U1149, Centre de Recherche sur l'InflammationParisFrance,Department of Pathology, Beaujon Hospital (APHP)Université de ParisParisFrance
| | - Corinne Bousquet
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| |
Collapse
|
7
|
Liu T, Zhou L, Xiao Y, Andl T, Zhang Y. BRAF Inhibitors Reprogram Cancer-Associated Fibroblasts to Drive Matrix Remodeling and Therapeutic Escape in Melanoma. Cancer Res 2022; 82:419-432. [DOI: 10.1158/0008-5472.can-21-0614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
|
8
|
Ikeda-Iwabu Y, Taniyama Y, Katsuragi N, Sanada F, Koibuchi N, Shibata K, Shimazu K, Rakugi H, Morishita R. Periostin Short Fragment with Exon 17 via Aberrant Alternative Splicing Is Required for Breast Cancer Growth and Metastasis. Cells 2021; 10:892. [PMID: 33919736 PMCID: PMC8070743 DOI: 10.3390/cells10040892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Periostin (POSTN) is a 93 kDa matrix protein that helps to regulate collagen gene expression in the extracellular matrix. POSTN overexpression is a prognostic factor in malignant cancers; however, some researchers have observed it in the stroma, whereas others have reported it on tumors. OBJECTIVE This study aimed to investigate the function of POSTN on tumors. METHODS AND RESULTS We found that POSTN in cancer cells can be detected by using an antibody against the POSTN C-terminal region exon 17 (Ex17 antibody), but not with an antibody against the POSTN N-terminal region exon 12 (Ex12 antibody) in patients with breast cancer. In a fraction secreted from fibroblasts, LC-MS/MS analysis revealed a short fragment of POSTN of approximately 40 kDa with exon 17. In addition, molecular interaction analysis showed that POSTN with exon 17, but not POSTN without exon 17, bound specifically to wnt3a, and the Ex17 antibody inhibited the binding. CONCLUSION A short fragment of POSTN with exon 17, which originates in the fibroblasts, is transported to cancer cells, whereas POSTN fragments without exon 17 are retained in the stroma. The Ex17 antibody inhibits the binding between POSTN exon 17 and wnt3a.
Collapse
Affiliation(s)
- Yuka Ikeda-Iwabu
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Naruto Katsuragi
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Fumihiro Sanada
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Nobutaka Koibuchi
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Kana Shibata
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (Y.I.-I.); (N.K.); (F.S.); (N.K.); (K.S.)
| |
Collapse
|
9
|
Wu J, Lin Q, Li S, Shao X, Zhu X, Zhang M, Zhou W, Ni Z. Periostin Contributes to Immunoglobulin a Nephropathy by Promoting the Proliferation of Mesangial Cells: A Weighted Gene Correlation Network Analysis. Front Genet 2021; 11:595757. [PMID: 33488671 PMCID: PMC7817997 DOI: 10.3389/fgene.2020.595757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a known cause of end-stage kidney disease, but the pathogenesis and factors affecting prognosis are not fully understood. In the present study, we carried out weighted gene correlation network analysis (WGCNA) to identify hub genes related to the occurrence of IgAN and validated candidate genes in experiments using mouse mesangial cells (MMCs) and clinical specimens (kidney tissue from IgAN patients and healthy controls). We screened the GSE37460 and GSE104948 differentially expressed genes common to both datasets and identified periostin (POSTN) as one of the five key genes using the cytoHubba plugin of Cytoscape software and by receiver-operating characteristic curve analysis. The top 25% of genes in the GSE93798 dataset showing variable expression between IgAN and healthy tissue were assessed by WGCNA. The royalblue module in WGCNA was closely related to creatinine and estimated glomerular filtration rate (eGFR) in IgAN patients. POSTN had very high module membership and gene significance values for creatinine (0.82 and 0.66, respectively) and eGFR (0.82 and -0.67, respectively), indicating that it is a co-hub gene. In MMCs, POSTN was upregulated by transforming growth factor β1, and stimulation of MMCs with recombinant POSTN protein resulted in an increase in the level of proliferating cell nuclear antigen (PCNA) and a decrease in that of B cell lymphoma-associated X protein, which were accompanied by enhanced MMC proliferation. POSTN gene knockdown had the opposite effects. Immunohistochemical analysis of kidney tissue specimens showed that POSTN and PCNA levels were elevated, whereas the rate of apoptosis was reduced in IgAN patients relative to healthy controls. POSTN level in the kidney tissue of IgAN patients was positively correlated with creatinine level and negatively correlated with eGFR. Thus, POSTN promotes the proliferation of MCs to promote renal dysfunction in IgAN.
Collapse
Affiliation(s)
- Jingkui Wu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Lin
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Li
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuying Zhu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Zhang
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Zhou
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Yoshihara T, Nanri Y, Nunomura S, Yamaguchi Y, Feghali-Bostwick C, Ajito K, Murakami S, Mawatari M, Izuhara K. Periostin plays a critical role in the cell cycle in lung fibroblasts. Respir Res 2020; 21:38. [PMID: 32000779 PMCID: PMC6993476 DOI: 10.1186/s12931-020-1299-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating disease with a median survival of only three to 5 years. Fibroblast proliferation is a hallmark of IPF as is secretion of extracellular matrix proteins from fibroblasts. However, it is still uncertain how IPF fibroblasts acquire the ability to progressively proliferate. Periostin is a matricellular protein highly expressed in the lung tissues of IPF patients, playing a critical role in the pathogenesis of pulmonary fibrosis. However, it remains undetermined whether periostin affects lung fibroblast proliferation. METHODS In this study, we first aimed at identifying periostin-dependently expressed genes in lung fibroblasts using DNA microarrays. We then examined whether expression of cyclins and CDKs controlling cell cycle progression occur in a periostin-dependent manner. We next examined whether downregulation of cell proliferation-promoting genes by knockdown of periostin or integrin, a periostin receptor, using siRNA, is reflected in the cell proliferation of lung fibroblasts. We then looked at whether lung fibroblasts derived from IPF patients also require periostin for maximum proliferation. We finally investigated whether CP4715, a potent inhibitor against integrin αVβ3 (a periostin receptor), which we have recently found blocks TGF-β signaling, followed by reduced BLM-induced pulmonary fibrosis in mice, can block proliferation of lung fibroblasts derived from IPF patients. RESULTS Many cell-cycle-related genes are involved in the upregulated or downregulated genes by periostin knockdown. We confirmed that in lung fibroblasts, periostin silencing downregulates expression of several cell-cycle-related molecules, including the cyclin, CDK, and, E2F families, as well as transcription factors such as B-MYB and FOXM1. Periostin or integrin silencing slowed proliferation of lung fibroblasts and periostin silencing increased the distribution of the G0/G1 phase, whereas the distribution of the G2/M phase was decreased. Lung fibroblasts derived from IPF patients also required periostin for maximum proliferation. Moreover, CP4715 downregulated proliferation along with expression of cell-cycle-related genes in IPF lung fibroblasts as well as in normal lung fibroblasts. CONCLUSIONS Periostin plays a critical role in the proliferation of lung fibroblasts and the present results provide us a solid basis for considering inhibitors of the periostin/integrin αVβ3 interaction for the treatment of IPF patients.
Collapse
Affiliation(s)
- Tomohito Yoshihara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Keiichi Ajito
- Pharmaceutical Research Center, Meiji Seika Pharma Co. Ltd., Yokohama, 222-8567, Japan
| | - Shoichi Murakami
- Pharmaceutical Research Center, Meiji Seika Pharma Co. Ltd., Yokohama, 222-8567, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Saga Medical School, Saga, 849-8501, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| |
Collapse
|
11
|
Yoshida H, Koodie L, Jacobsen K, Hanzawa K, Miyamoto Y, Yamamoto M. B4GALNT1 induces angiogenesis, anchorage independence growth and motility, and promotes tumorigenesis in melanoma by induction of ganglioside GM2/GD2. Sci Rep 2020; 10:1199. [PMID: 31988291 PMCID: PMC6985110 DOI: 10.1038/s41598-019-57130-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
β-1,4-N-Acetyl-Galactosaminyltransferase 1 (B4GALNT1) encodes the key enzyme B4GALNT1 to generate gangliosides GM2/GD2. GM2/GD2 gangliosides are surface glycolipids mainly found on brain neurons as well as peripheral nerves and skin melanocytes and are reported to exacerbate the malignant potential of melanomas. In order to elucidate the mechanism, we performed functional analyses of B4GALNT1-overexpressing cells. We analyzed ganglioside pattern on four melanoma and two neuroblastoma cell lines by high performance liquid chromatography (HPLC). We overexpressed B4GALNT1 in GM2/GD2-negative human melanoma cell line (SH4) and confirmed production of GM2/GD2 by HPLC. They showed higher anchorage independence growth (AIG) in colony formation assay, and exhibited augmented motility. In vitro, cell proliferation was not affected by GM2/GD2 expression. In vivo, GM2/GD2-positive SH4 clones showed significantly higher tumorigenesis in NOD/Scid/IL2Rγ-null mice, and immunostaining of mouse CD31 revealed that GM2/GD2 induced remarkable angiogenesis. No differences were seen in melanoma stem cell and Epithelial-Mesenchymal Transition markers between GM2/GD2-positive and -negative SH4 cells. We therefore concluded that B4GALNT1, and consequently GM2/GD2, enhanced tumorigenesis via induction of angiogenesis, AIG, and cell motility. RNA-Seq suggested periostin as a potential key factor for angiogenesis and AIG. These findings may lead to development of novel therapy for refractory melanoma.
Collapse
Affiliation(s)
- Hideki Yoshida
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa Koodie
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, Osaka, Japan
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
12
|
Castro DTH, Campos JF, Damião MJ, Torquato HFV, Paredes-Gamero EJ, Carollo CA, Rodrigues EG, de Picoli Souza K, dos Santos EL. Ethanolic Extract of Senna velutina Roots: Chemical Composition, In Vitro and In Vivo Antitumor Effects, and B16F10-Nex2 Melanoma Cell Death Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5719483. [PMID: 31285786 PMCID: PMC6594258 DOI: 10.1155/2019/5719483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Cutaneous melanoma is among the most aggressive types of cancer, and its rate of occurrence increases every year. Current pharmacological treatments for melanoma are not completely effective, requiring the identification of new drugs. As an alternative, plant-derived natural compounds are described as promising sources of new anticancer drugs. In this context, the objectives of this study were to identify the chemical composition of the ethanolic extract of Senna velutina roots (ESVR), to assess its in vitro and in vivo antitumor effects on melanoma cells, and to characterize its mechanisms of action. For these purposes, the chemical constituents were identified by liquid chromatography coupled to high-resolution mass spectrometry. The in vitro activity of the extract was assessed in the B16F10-Nex2 melanoma cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and based on the apoptotic cell count; DNA fragmentation; necrostatin-1 inhibition; intracellular calcium, pan-caspase, and caspase-3 activation; reactive oxygen species (ROS) levels; and cell cycle arrest. The in vivo activity of the extract was assessed in models of tumor volume progression and pulmonary nodule formation in C57Bl/6 mice. The chemical composition results showed that ESVR contains flavonoid derivatives of the catechin, anthraquinone, and piceatannol groups. The extract reduced B16F10-Nex2 cell viability and promoted apoptotic cell death as well as caspase-3 activation, with increased intracellular calcium and ROS levels as well as cell cycle arrest at the sub-G0/G1 phase. In vivo, the tumor volume progression and pulmonary metastasis of ESVR-treated mice decreased over 50%. Combined, these results show that ESVR had in vitro and in vivo antitumor effects, predominantly by apoptosis, thus demonstrating its potential as a therapeutic agent in the treatment of melanoma and other types of cancer.
Collapse
Affiliation(s)
- David Tsuyoshi Hiramatsu Castro
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, CEP: 79804-970 MS, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, CEP: 79804-970 MS, Brazil
| | - Marcio José Damião
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, CEP: 79804-970 MS, Brazil
| | | | - Edgar Julian Paredes-Gamero
- Department of Biochemistry, Federal University of São Paulo, São Paulo, CEP: 04044-020, SP, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, CEP: 79070-900, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, CEP: 79070-900 MS, Brazil
| | - Elaine Guadelupe Rodrigues
- Department of Microbiology, Immunology, and Parasitology, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, CEP: 04023-062 SP, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, CEP: 79804-970 MS, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, CEP: 79804-970 MS, Brazil
| |
Collapse
|
13
|
Deng X, Ao S, Hou J, Li Z, Lei Y, Lyu G. Prognostic significance of periostin in colorectal cancer. Chin J Cancer Res 2019; 31:547-556. [PMID: 31354223 PMCID: PMC6613499 DOI: 10.21147/j.issn.1000-9604.2019.03.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that periostin is frequently upregulated in tissue injury, inflammation, fibrosis and tumor progression. Periostin expression in cancer cells can promote metastatic potential of colorectal cancer (CRC) via activating PI3K/Akt signaling pathway. Moreover, periostin is observed mainly in tumor stroma and cytoplasm of cancer cells, which may facilitate aggressiveness of CRC. In this review, we summarize information regarding periostin to emphasize its role as a prognostic marker of CRC.
Collapse
Affiliation(s)
- Xingming Deng
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhuofei Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guoqing Lyu
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
14
|
Maeda D, Kubo T, Kiya K, Kawai K, Matsuzaki S, Kobayashi D, Fujiwara T, Katayama T, Hosokawa K. Periostin is induced by IL-4/IL-13 in dermal fibroblasts and promotes RhoA/ROCK pathway-mediated TGF-β1 secretion in abnormal scar formation. J Plast Surg Hand Surg 2019; 53:288-294. [DOI: 10.1080/2000656x.2019.1612752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daisuke Maeda
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichiro Kiya
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenichiro Kawai
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Toshihiro Fujiwara
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Ko Hosokawa
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
15
|
Song J, Merbs SL, Sokoll LJ, Chan DW, Zhang Z. A multiplex immunoassay of serum biomarkers for the detection of uveal melanoma. Clin Proteomics 2019; 16:10. [PMID: 30867659 PMCID: PMC6399902 DOI: 10.1186/s12014-019-9230-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Background Approximately 50% of uveal melanoma (UM) patients develop metastases preferentially in the liver leading to death within 15 months. Currently, there is no effective treatment for metastatic UM, in part because the tumor burden is typically high when liver metastases are detected through abnormal liver function tests (LFTs) or imaging studies. The use of LFTs results followed by diagnostic tests has high specificity and predictive values but low sensitivity, and better tests are needed for early diagnosis of the primary tumor as well as its metastatic spread. To evaluate serum biomarkers for the early detection of UM, multiplex immunoassays were developed. Methods Magnetic bead-based multiplex immunoassays were developed for the selected serum biomarkers using a Bio-Plex 200 system. The dynamic ranges, lower limits of detection and quantification, cross-reactivity, and intra- and inter-assay precision were assessed. All proteins were analyzed in sera of 48 patients diagnosed with UM (14 metastatic, 9 disease–free (DF) ≥ 5 years, 25 unknown) and 36 healthy controls. The performance of the biomarkers was evaluated individually and in combination for their ability to detect UM. Results A 7-plex immunoassay of OPN, MIA, CEACAM-1, MIC-1, SPON1, POSTN and HSP27 was developed with negligible cross-reactivity, recovery of 84–105%, and intra-assay and inter-assay precision of 2.3–7.5% or 2.8–20.8%, respectively. Logistic regression identified a two-marker panel of HSP27 and OPN that significantly improved the individual biomarker performance in discriminating UM from healthy controls. The improved discrimination of a two-marker panel of MIA and MIC-1 was also observed between metastatic UM and DF, however not statistically significant due to the small sample size. Conclusions The multiplex immunoassay provides sufficient analytical performance to evaluate serum biomarkers that complement each other in detection of UM, and warrants further validation with a larger number of patient samples. Electronic supplementary material The online version of this article (10.1186/s12014-019-9230-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Song
- 1Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.,3Department of Pathology, Johns Hopkins University School of Medicine, 419 North Caroline Street, Baltimore, MD 21231 USA
| | - Shannath L Merbs
- 2Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Lori J Sokoll
- 1Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Daniel W Chan
- 1Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Zhen Zhang
- 1Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
16
|
Frantzi M, Latosinska A, Mischak H. Proteomics in Drug Development: The Dawn of a New Era? Proteomics Clin Appl 2019; 13:e1800087. [DOI: 10.1002/prca.201800087] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Maria Frantzi
- Mosaiques Diagnostics GmbHRotenburger Straße 20 D‐30659 Hannover Germany
| | | | - Harald Mischak
- Mosaiques Diagnostics GmbHRotenburger Straße 20 D‐30659 Hannover Germany
- BHF Glasgow Cardiovascular Research CentreUniversity of Glasgow G12 8TA Glasgow UK
| |
Collapse
|
17
|
Ohno F, Nakahara T, Kido-Nakahara M, Ito T, Nunomura S, Izuhara K, Furue M. Periostin Links Skin Inflammation to Melanoma Progression in Humans and Mice. Int J Mol Sci 2019; 20:ijms20010169. [PMID: 30621220 PMCID: PMC6337622 DOI: 10.3390/ijms20010169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 01/07/2023] Open
Abstract
It is widely accepted that chronic inflammation initiates and promotes carcinogenesis and tumor progression in various cell types. However, this paradigm has not been comprehensively investigated in melanoma. To investigate the effects of chronic inflammation on the progression of melanoma, we established a murine inflammatory skin model and investigated the relationship between skin inflammation and melanoma progression. In a murine model, B16F10 melanoma cells in inflamed skin grew significantly more rapidly than cells in control skin. The stromal expression of periostin was upregulated in inflamed skin, and significantly more CD163+ M2 macrophages were recruited to the melanomas in inflamed skin. We then immunohistologically examined the expression of stromal periostin and the infiltration of CD163+ M2 macrophages in human acral lentiginous melanomas (n = 94) and analyzed the statistical associations with clinicopathological variables. In human melanomas, high periostin expression and a large number of infiltrated M2 macrophages were significantly correlated with poor prognosis. Furthermore, we confirmed that periostin promotes the proliferation of murine and human melanoma cells in vitro. Our findings indicate that periostin and M2 macrophages play a critical role in melanoma progression and prognosis in both humans and mice, indicating that periostin is a potential target for treating progressive melanoma.
Collapse
Affiliation(s)
- Fumitaka Ohno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Satoshi Nunomura
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Kenji Izuhara
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan.
| |
Collapse
|
18
|
Kuwatsuka Y, Murota H. Involvement of Periostin in Skin Function and the Pathogenesis of Skin Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:89-98. [DOI: 10.1007/978-981-13-6657-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Kang Y, Liu J, Zhang Y, Sun Y, Wang J, Huang B, Zhong M. Upregulation of Periostin expression in the pathogenesis of ameloblastoma. Pathol Res Pract 2018; 214:1959-1965. [PMID: 30196986 DOI: 10.1016/j.prp.2018.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/16/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Abstract
Ameloblastoma(AB) is an aggressive and slow-growing tumor with high recurrence rate, which arises from odontogenic epithelium. AB mostly shows osteolytic growth, but the specific pathogenesis is not yet clear. Periostin is a considered a prominent oncogene, which was mainly produced by osteoblasts and their precursors cells, it have been proved that Periostin play an important role in bone lysis. However, the precise role of Periostin in AB progression remains unknown. In this article, the surgical specimens from cases of AB were collected, and the Periostin expression was tested and the results were analyzed for possible correlations with clinical characteristics. In addition, the proliferation、cell cycle and migration of AM-1 cells were evaluated after transfection of siPeriostin. The results showed that Periostin levels were significantly higher in patients with AB than in controls. Moreover, Periostin levels in patients with AB were significantly associated with the number of disease. Furthermore, the results suggested that Periostin expression significantly promoted the proliferation and migration, in addition to cell cycle progression of AM-1 cells. The present study demonstrated that Periostin may be important in the pathogenesis and progression of AB and indicated its potential therapeutic value.
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, China
| | - Jie Liu
- Department of Central Laboratory, China Medical University, China
| | - Ying Zhang
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, China
| | - Yan Sun
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, China
| | - Junting Wang
- Department of Oral Histopathology, School of Stomatology, China Medical University, China
| | - Biying Huang
- Department of Oral Histopathology, School of Stomatology, China Medical University, China
| | - Ming Zhong
- Department of Oral Histopathology, School of Stomatology, China Medical University, China.
| |
Collapse
|
20
|
NRF2 Activation Inhibits Both TGF- β1- and IL-13-Mediated Periostin Expression in Fibroblasts: Benefit of Cinnamaldehyde for Antifibrotic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2475047. [PMID: 30186543 PMCID: PMC6112270 DOI: 10.1155/2018/2475047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
Systemic fibrosing or sclerotic disorders are life-threatening, but only very limited treatment modalities are available for them. In recent years, periostin (POSTN), a major extracellular matrix component, was established by several studies as a novel key player in the progression of systemic fibrotic disease. In this research, we revealed the involvement of oxidative stress in the expression of POSTN induced by TGF-β1 and IL-13 in dermal fibroblasts. We found that the antioxidant cinnamaldehyde activated the NRF2/HMOX1 pathway. Cinnamaldehyde also alleviated TGF-β1- and IL-13-mediated production of reactive oxygen species and subsequent POSTN upregulation in dermal fibroblasts. In contrast, NRF2 silencing abolished the cinnamaldehyde-mediated downregulation of POSTN. These results suggest that cinnamaldehyde is a broad inhibitor of POSTN expression covering both TGF-β1 and IL-13 signaling. Cinnamaldehyde may thus be beneficial for the treatment of systemic fibrotic diseases.
Collapse
|
21
|
González-González L, Alonso J. Periostin: A Matricellular Protein With Multiple Functions in Cancer Development and Progression. Front Oncol 2018; 8:225. [PMID: 29946533 PMCID: PMC6005831 DOI: 10.3389/fonc.2018.00225] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
Tumor microenvironment is considered nowadays as one of the main players in cancer development and progression. Tumor microenvironment is highly complex and consists of non-tumor cells (i.e., cancer-associated fibroblast, endothelial cells, or infiltrating leukocytes) and a large list of extracellular matrix proteins and soluble factors. The way that microenvironment components interact among them and with the tumor cells is very complex and only partially understood. However, it is now clear that these interactions govern and modulate many of the cancer hallmarks such as cell proliferation, the resistance to death, the differentiation state of tumor cells, their ability to migrate and metastasize, and the immune response against tumor cells. One of the microenvironment components that have emerged in the last years with strength is a heterogeneous group of multifaceted proteins grouped under the name of matricellular proteins. Matricellular proteins are a family of non-structural matrix proteins that regulate a variety of biological processes in normal and pathological situations. Many components of this family such as periostin (POSTN), osteopontin (SPP1), or the CNN family of proteins have been shown to regulate key aspect of tumor biology, including proliferation, invasion, matrix remodeling, and dissemination to pre-metastatic niches in distant organs. Matricellular proteins can be produced by tumor cells themselves or by tumor-associated cells, and their synthesis can be affected by intrinsic and/or extrinsic tumor cell factors. In this review, we will focus on the role of POSTN in the development and progression of cancer. We will describe their functions in normal tissues and the mechanisms involved in their regulation. We will analyze the tumors in which their expression is altered and their usefulness as a biomarker of tumor progression. Finally, we will speculate about future directions for research and therapeutic approaches targeting POSTN.
Collapse
Affiliation(s)
- Laura González-González
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Murota H, Lingli Y, Katayama I. Periostin in the pathogenesis of skin diseases. Cell Mol Life Sci 2017; 74:4321-4328. [PMID: 28916993 PMCID: PMC11107733 DOI: 10.1007/s00018-017-2647-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Skin is an organ that is susceptible to damage by external injury, chronic inflammation, and autoimmunity. Tissue damage causes alterations in both the configuration and type of cells in lesional skin. This phenomenon, called tissue remodeling, is a universal biological response elicited by programmed cell death, inflammation, immune disorders, and tumorigenic, tumor proliferative, and cytoreductive activity. In this process, changes in the components of the extracellular matrix are required to provide an environment that facilitates tissue remodeling. Among these extracellular matrix components, periostin, a glycoprotein that is predominantly secreted from dermal fibroblasts, has attracted attention. Periostin localizes in the papillary dermis of normal skin, and is aberrantly expressed in the dermis of lesional skin in atopic dermatitis, scar, systemic/limited scleroderma, melanoma, cutaneous T cell lymphoma, and skin damage caused by allergic/autoimmune responses. Periostin induces processes that result in the development of dermal fibrosis, and activate or protract the immune response. The aim of this review was to summarize recent knowledge of the role of periostin in the pathogenesis of dermatoses, and to explore whether periostin is a potential therapeutic target for skin diseases.
Collapse
Affiliation(s)
- Hiroyuki Murota
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan.
| | - Yang Lingli
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
23
|
Xu CH, Wang W, Lin Y, Qian LH, Zhang XW, Wang QB, Yu LK. Diagnostic and prognostic value of serum periostin in patients with non-small cell lung cancer. Oncotarget 2017; 8:18746-18753. [PMID: 27816968 PMCID: PMC5386644 DOI: 10.18632/oncotarget.13004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
The periostin protein is expressed in a variety of human malignancies. The aim of this study was to explore the diagnostic and prognostic value of serum periostin levels in patients with non-small cell lung cancer (NSCLC). We measured serum periostin levels by ELISA in 296 NSCLC patients, 120 benign lung diseases (BLD) patients and 160 healthy controls. The levels of serum periostin in NSCLC patients were significantly elevated compared with those in healthy controls (P < 0.001) and BLD patients (P < 0.001). Using a cutoff value of 30.87 ng/ml, the sensitivity and specificity of periostin in differentiating between NSCLC patients and BLD patients, and between NSCLC patients and healthy controls was, 48.6 and 91.7%, and 51.4 and 97.5%, respectively. Kaplan-Meier log rank analysis revealed that the higher serum periostin levels group had a poorer progression-free survival (PFS) and overall survival (OS) compared with lower periostin group (P = 0.024, P = 0.015, respectively). Further univariate and multivariate Cox regression analysis showed that serum periostin was an independent risk factor of prognosis of NSCLC patients. In conclusion, our study suggests that serum periostin could be considered as a diagnostic and prognostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Chun-Hua Xu
- Endoscopic Center of Nanjing Chest Hospital, Nanjing, Jiangsu 210029, China.,Clinical Center of Nanjing Respiratory Diseases and Imaging, Nanjing, Jiangsu 210029, China
| | - Wei Wang
- Endoscopic Center of Nanjing Chest Hospital, Nanjing, Jiangsu 210029, China.,Clinical Center of Nanjing Respiratory Diseases and Imaging, Nanjing, Jiangsu 210029, China
| | - Yong Lin
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029, China
| | - Li-Hua Qian
- Department of Respiratory Medicine, Nanjing Pukou Central Hospital, Nanjing, Jiangsu 211800, China
| | - Xiu-Wei Zhang
- Department of Respiratory Medicine, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Qing-Bo Wang
- Department of Geriatrics Medicine, Nanjing Second Hospital, Nanjing, Jiangsu 210003, China
| | - Li-Ke Yu
- Endoscopic Center of Nanjing Chest Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
24
|
Fujimura T, Hidaka T, Kambayashi Y, Furudate S, Kakizaki A, Tono H, Tsukada A, Haga T, Hashimoto A, Morimoto R, Yamaguchi T, Takano T, Aiba S. Phase I study of nivolumab combined with IFN-β for patients with advanced melanoma. Oncotarget 2017; 8:71181-71187. [PMID: 29050354 PMCID: PMC5642629 DOI: 10.18632/oncotarget.17090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/21/2017] [Indexed: 01/10/2023] Open
Abstract
The efficacy of nivolumab is greater than that of other anti-melanoma drugs, so nivolumab-based combined therapies that enhance anti-tumor immune responses in patients with metastatic melanoma are of great interest to dermato-oncologists. As we have previously reported, IFN-β enhances the anti-tumor immune response of anti-PD-1 antibodies against B16F10 melanoma in vivo. To explore the potential of this property of IFN-β as part of a combination therapy for the treatment of metastatic melanoma patients, we performed a phase 1 trial, using a traditional rule-based 3 + 3 design, on patients with advanced melanoma. The nivolumab dose was fixed at 2 mg/kg, every 3 weeks. IFN-β was administered to three groups at doses of 1 million, 2 million, and 3 million units, respectively. Dose-limiting toxicities were defined as any grade 3-5 adverse events occurring between day 0 and day 42 that might possibly be related to nivolumab and IFN-β. Of the nine patients who received this combined therapy, none experienced dose-limiting toxicities, and all completed the treatment phase of the study. Patient follow-up continued for 6 months following the final treatment. There were two complete responses (22%) and one partial response (11%), all of which occurred in patients who had received monthly IFN-β immediately prior to the study. In this study, we determined the safe dose of IFN-β, when combined with nivolumab, to be 3 million units. To determine the efficacy of this combination therapy, further phase II trials are required.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sadanori Furudate
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aya Kakizaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisayuki Tono
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Tsukada
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takahiro Haga
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Hashimoto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadao Takano
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
25
|
Gingival Crevicular Fluid and Salivary Periostin Levels in Non-Smoker Subjects With Chronic and Aggressive Periodontitis : Periostin Levels in Chronic and Aggressive Periodontitis. Inflammation 2017; 39:986-93. [PMID: 26931107 DOI: 10.1007/s10753-016-0328-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Periostin, an extracellular matrix protein functioning as an important structural mediator and adhesion molecule, has been shown to be an important regulator of connective tissue integrity. This study aimed to evaluate the levels of periostin in chronic periodontitis (CP) and aggressive periodontitis (AgP) compared to non-periodontitis (NP). Individuals were submitted to gingival crevicular fluid (GCF) and saliva sampling. Periodontal examination consisted of plaque index (PI), gingival index (GI), probing depth (PD), bleeding on probing (BOP), and clinical attachment level (CAL) measurements. Assays for periostin were performed by an enzyme-linked immunosorbent assay. Periodontitis patients presented more severe clinical indices compared to the NP group (p < 0.001). The mean GCF level of periostin was lowest in the AgP group as compared to the other groups and was lower in the CP group as compared to the NP group (p < 0.001). Increased levels of periostin were observed in the saliva of patients with AgP as compared to the CP and NP groups (p < 0.05). There was a negative relationship between GCF periostin levels and clinical parameters (p < 0.01), whereas a positive correlation was observed between salivary periostin levels and full-mouth GI and CAL scores (p < 0.01). To our knowledge, this is the first report investigating periostin levels in GCF and saliva in aggressive periodontitis. The results suggest that subjects with CP and AgP exhibit a different periostin profile. Periostin in GCF may have a protective role against periodontal disease. Furthermore, salivary periostin concentrations may have a promising diagnostic potential for the aggressive forms of periodontal disease.
Collapse
|
26
|
Takeda T, Tsubaki M, Sakamoto K, Ichimura E, Enomoto A, Suzuki Y, Itoh T, Imano M, Tanabe G, Muraoka O, Matsuda H, Satou T, Nishida S. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicol Appl Pharmacol 2016; 306:105-12. [PMID: 27417526 DOI: 10.1016/j.taap.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/25/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
Abstract
Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Kotaro Sakamoto
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Eri Ichimura
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Aya Enomoto
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Yuri Suzuki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Genzoh Tanabe
- Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka, Japan
| | - Osamu Muraoka
- Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka, Japan
| | - Hideaki Matsuda
- Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan.
| |
Collapse
|
27
|
Khan Z, Marshall JF. The role of integrins in TGFβ activation in the tumour stroma. Cell Tissue Res 2016; 365:657-73. [PMID: 27515461 PMCID: PMC5010607 DOI: 10.1007/s00441-016-2474-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022]
Abstract
TGFβ1 is the most pleiotropic of all known cytokines and thus, to avoid uncontrolled TGFβ-activated processes, its activity is tightly regulated. Studies in fibrosis have led to the discovery that αv integrins are the major regulators of the local activation of latent TGFβ in our tissues. Since all cells can express one or more types of αv integrins, this raises the possibility that, in the complex milieu of a developing cancer, multiple cell types including both cancer cells and stromal cells activate TGFβ. In normal tissues, TGFβ1 is a tumour suppressor through its ability to suppress epithelial cell division, whereas in cancer, in which tumour cells develop genetic escape mechanisms to become resistant to TGFβ growth suppression, TGFβ signalling creates a tumour-permissive environment by activating fibroblast-to-myofibroblast transition, by promoting angiogenesis, by suppressing immune cell populations and by promoting the secretion of both matrix proteins and proteases. In addition, TGFβ drives epithelial-to-mesenchymal transition (EMT) increasing the potential for metastasis. Since αv integrins activate TGFβ, they almost certainly drive TGFβ-dependent cancer progression. In this review, we discuss the data that are helping to develop this hypothesis and describe the evidence that αv integrins regulate the TGFβ promotion of cancer. Graphical Abstract Mechanisms of integrin-mediated transforming growth factor beta (TGFβ) activation and its effect on stromal processes. 1 Matrix-bound latent LAP-TGFβ1 binds αv integrins expressed by epithelial cells or fibroblasts (LAP latency-associated peptide). TGFβ1 becomes exposed. 2 Active TGFβ1 binds the TGFβ receptor in an autocrine or paracrine fashion. 3 TGFβ1 signalling increases integrin expression, LAP-TGFβ1 secretion and trans-differentiation of fibroblasts into contractile cells that secrete collagens and collagen cross-linking proteins. By contracting the matrix, latent TGFβ1 is stretched making the activation of latent TGFβ1 easier and creating a continuous cycle of TGFβ1 signalling. TGFβ1 promotes cancer progression by promoting angiogenesis, immune suppression and epithelial-to-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Zareen Khan
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Abstract
Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate.
Collapse
Affiliation(s)
- Deepanwita Sengupta
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA; Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| |
Collapse
|
29
|
Wang X, Zhao F, He X, Wang J, Zhang Y, Zhang H, Ni Y, Sun J, Wang X, Dou J. Combining TGF-β1 knockdown and miR200c administration to optimize antitumor efficacy of B16F10/GPI-IL-21 vaccine. Oncotarget 2016; 6:12493-504. [PMID: 25895132 PMCID: PMC4494953 DOI: 10.18632/oncotarget.3722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/05/2015] [Indexed: 11/26/2022] Open
Abstract
TGF-β1 secreted abundantly by tumors cells as well as present in the local microenvironment promotes neoplasm invasion and metastasis by triggering the epithelial to mesenchymal transition (EMT). MiR200c has been shown to suppress EMT and to regulate the cellular epithelial and interstitial state conversion, whereas the tumor vaccines are intended to specifically initiate or amplify a host response against evolving tumor cells. Our study aimed at optimizing the antitumor effects of the B16F10/glycosylphosphatidylinositol-interleukin 21 (B16F10/GPI-IL-21) tumor vaccine on melanoma bearing mice by combining the TGF-β1 knockdown and the administration of miR200c agomir. The mice were subcutaneously vaccinated with inactivated B16F10/GPI-IL-21 vaccine and challenged by B16F10 cells transfected with shTGF-β1 (B16F10/shTGF-β1 cells) or B16F10/shTGF-β1 cells with the administration of miR200c agomir. The later combination showed that, when compared with the mice in the control group that received no vaccination, vaccinated mice significantly increased NK and CTL activities, enhanced levels of IFN-γ, and reduced expression of TGF-β1, N-cadherin, Vimentin, Gli1/2, P-Smad2/3 and others involved in promoting expression of EMT-related molecules in tumor areas, and inhibited the melanoma metastasis in lungs and lymph nodes. Altogether, our findings demonstrate that this synergistic anti-cancer regimen effectively induces strong immune response and diminishes the melanoma progression.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Xiangfeng He
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jing Wang
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Hongyi Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Yaoyao Ni
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Jianan Sun
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Xiaobing Wang
- Department of Center for Experiment Animal, School of Medicine, Southeast University, Nanjing, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Qin X, Yan M, Zhang J, Wang X, Shen Z, Lv Z, Li Z, Wei W, Chen W. TGFβ3-mediated induction of Periostin facilitates head and neck cancer growth and is associated with metastasis. Sci Rep 2016; 6:20587. [PMID: 26857387 PMCID: PMC4746667 DOI: 10.1038/srep20587] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
The matrix-specific protein periostin (POSTN) is up-regulated in human cancers and associated with cancer growth, metastasis and angiogenesis. Although the stroma of cancer tissues is the main source of POSTN, it is still unclear how POSTN plays a role to facilitate the interplay between cancer cells and cancer-associated fibroblasts (CAFs) in head and neck cancer (HNC), thereby promoting tumorigenesis via modifying the tumor microenvironment. Herein, we have performed studies to investigate POSTN and its role in HNC microenvironment. Our results indicated that POSTN was significantly up-regulated in HNCs, especially in the tissues with lymph node metastasis. Moreover, POSTN was highly enriched in the stroma of cancer tissues and produced mainly by CAFs. More importantly, we have pinpointed TGF-β3 as the major upstream molecular that triggers the induction of POSTN in CAFs. As such, during the interaction between fibroblasts and cancer cells, the increased stromal POSTN induced by TGF-β3 directly accelerated the growth, migration and invasion of cancer cells. Hence, our study has provided a novel modulative role for POSTN on HNC progression and further reveals POSTN as an effective biomarker to predict metastasis as well as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Xing Qin
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zongze Shen
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhongjing Lv
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhihui Li
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wenyi Wei
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head &Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
31
|
Kaushik A, Bhatia Y, Ali S, Gupta D. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma. PLoS One 2015; 10:e0142443. [PMID: 26558755 PMCID: PMC4641706 DOI: 10.1371/journal.pone.0142443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023] Open
Abstract
Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis.
Collapse
Affiliation(s)
- Abhinav Kaushik
- Bioinformatics Laboratory, Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Yashuma Bhatia
- Bioinformatics Laboratory, Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Dinesh Gupta
- Bioinformatics Laboratory, Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- * E-mail:
| |
Collapse
|
32
|
Chiappori A, De Ferrari L, Folli C, Mauri P, Riccio AM, Canonica GW. Biomarkers and severe asthma: a critical appraisal. Clin Mol Allergy 2015; 13:20. [PMID: 26430389 PMCID: PMC4590266 DOI: 10.1186/s12948-015-0027-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Severe asthma (SA) is a clinically and etiologically heterogeneous respiratory disease which affects among 5–10 % of asthmatic patients. Despite high-dose therapy, a large patients percentage is not fully controlled and has a poor quality of life. In this review, we describe the biomarkers actually known in scientific literature and used in clinical practice for SA assessment and management: neutrophils, eosinophils, periostin, fractional exhaled nitric oxide, exhaled breath condensate and galectins. Moreover, we give an overview on clinical and biological features characterizing severe asthma, paying special attention to the potential use of these ones as reliable markers. We finally underline the need to define different biomarkers panels to select patients affected by severe asthma for specific and personalized therapeutic approach.
Collapse
Affiliation(s)
- Alessandra Chiappori
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Laura De Ferrari
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Chiara Folli
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - Anna Maria Riccio
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Giorgio Walter Canonica
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| |
Collapse
|
33
|
Hutchenreuther J, Vincent KM, Carter DE, Postovit LM, Leask A. CCN2 Expression by Tumor Stroma Is Required for Melanoma Metastasis. J Invest Dermatol 2015; 135:2805-2813. [PMID: 26168233 DOI: 10.1038/jid.2015.279] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 01/19/2023]
Abstract
Metastatic melanoma has an extremely poor prognosis with few durable remissions. The secreted matricellular protein connective tissue growth factor (CCN2) is overexpressed in cancers including melanoma and may represent a viable therapeutic target. However, the mechanism underlying the contribution of CCN2 to melanoma progression is unclear. Herein, we use the highly metastatic murine melanoma cell line B16(F10) and syngeneic mice, in which CCN2 expression is knocked out in fibroblasts, to demonstrate that loss of CCN2, either in melanoma cells or in the niche, impedes the ability of melanoma cells to invade. Specifically, loss of CCN2 in melanoma cells diminished their ability to invade through collagen in vitro, and loss of fibroblast-derived CCN2 decreased spontaneous metastases of melanoma cells from the skin to the lungs in vivo. Proliferation and tumor growth were not affected by loss of CCN2. CCN2-deficient B16(F10) cells showed reduced expression of the matricellular protein periostin; addition of recombinant periostin rescued the in vitro invasion defect of these cells. Immunohistochemical analysis of CCN2-deficient mice confirmed loss of periostin expression in the absence of CCN2. CCN2 and periostin mRNA levels are positively correlated with each other and with the stromal composition of human melanoma lesions but not BRAF mutations. Thus, CCN2 promotes invasion and metastasis via periostin and should be further evaluated as a possible therapeutic target for BRAF inhibitor-resistant melanoma.
Collapse
Affiliation(s)
- James Hutchenreuther
- Department of Physiology and Pharmacology and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Krista M Vincent
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - David E Carter
- London Regional Genomics Centre, Robarts Institute, University of Western Ontario, London, Ontario, Canada
| | - Lynne-Marie Postovit
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Leask
- Department of Physiology and Pharmacology and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
34
|
Fukuda K, Sugihara E, Ohta S, Izuhara K, Funakoshi T, Amagai M, Saya H. Periostin Is a Key Niche Component for Wound Metastasis of Melanoma. PLoS One 2015; 10:e0129704. [PMID: 26083413 PMCID: PMC4471156 DOI: 10.1371/journal.pone.0129704] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/12/2015] [Indexed: 01/15/2023] Open
Abstract
Tissue injury promotes metastasis of several human cancers, although factors associated with wound healing that attract circulating tumor cells have remained unknown. Here, we examined the primary and metastatic lesions that appeared 1 month after trauma in a patient with acral lentiginous melanoma. The levels of mRNA for periostin (POSTN), type 1 collagen, and fibronectin were significantly increased in the metastatic lesion relative to the primary lesion. The increase of these extracellular matrix proteins at the wound site was reproduced in a mouse model of wound healing, with the upregulation of Postn mRNA persisting the longest. POSTN was expressed in the region surrounding melanoma cell nests in metastatic lesions of both wounded mice and the patient. POSTN attenuated the cell adhesion and promoted the migration of melanoma cells without affecting their proliferation in vitro. In the mouse model, the wound site as well as subcutaneously injected osteoblasts that secrete large amounts of POSTN invited the metastasis of remotely-transplanted melanoma cells on the sites. Osteoblasts with suppression of POSTN by shRNA showed a greatly reduced ability to promote such metastasis. Our results suggest that POSTN is a key factor in promoting melanoma cell metastasis to wound sites by providing a premetastatic niche.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Reddy LA, Mikesh L, Moskulak C, Harvey J, Sherman N, Zigrino P, Mauch C, Fox JW. Host response to human breast Invasive Ductal Carcinoma (IDC) as observed by changes in the stromal proteome. J Proteome Res 2014; 13:4739-51. [PMID: 25244421 DOI: 10.1021/pr500620x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Following initial transformation, tumorigenesis, growth, invasion, and metastasis involves a complex interaction between the transformed tissue and the host, particularly in the microenvironment adjacent to the developing tumor. The tumor microenvironment itself is a unique outcome of the host reacting to the tumor and perhaps the tumor reacting to the host and in turn the tumor altering the host's response to give rise to an environment that ultimately promotes tumor progression. The tumor-adjacent stromal, sometimes referred to as "reactive stromal" or the desmoplastic stroma, has received some investigative studies, but it is incomplete, and likely different tumors promote a varied response and hence different reactive stroma. In this study, we have investigated the proteomics of the host response, both in vitro and in vivo, to breast epithelial cancer, in the former using tissue culture and in the latter laser microdissection of stromal tissue both adjacent and distal to breast invasive ductal cancer (IDC). From proteomic analysis of in vitro tissue culture studies, we observed that the stroma produced is related to the invasiveness of the stimulating breast cancer cell lines but different from that observed from the stromal proteome of archival tissue. In vivo we have identified several potential markers of a reactive stroma. Furthermore, we observed that the proteome of tumor-adjacent stroma differs from that of tumor-distal stroma. The proteomic description of human breast IDC stroma may serve to enhance our understanding of the role of stroma in the progression of cancer and may suggest potential mechanisms of therapeutic interdiction.
Collapse
Affiliation(s)
- Lavakumar A Reddy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine , Jordan Hall, Box 441, Charlottesville, Virginia 22908, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu AY, Zheng H, Ouyang G. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol 2014; 37:150-6. [DOI: 10.1016/j.matbio.2014.04.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
|