1
|
Flick KM, Demirci H, Demirci FY. Epigenetics of Conjunctival Melanoma: Current Knowledge and Future Directions. Cancers (Basel) 2024; 16:3687. [PMID: 39518125 PMCID: PMC11544918 DOI: 10.3390/cancers16213687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The purpose of this article is to provide a literature review of the epigenetic understanding of conjunctival melanoma (CM), with a primary focus on current gaps in knowledge and future directions in research. CM is a rare aggressive cancer that predominantly affects older adults. Local recurrences and distant metastases commonly occur in CM patients; however, their prediction and management remain challenging. Hence, there is currently an unmet need for useful biomarkers and more effective treatments to improve the clinical outcomes of these patients. Like other cancers, CM occurrence and prognosis are believed to be influenced by multiple genetic and epigenetic factors that contribute to tumor development/progression/recurrence/spread, immune evasion, and primary/acquired resistance to therapies. Epigenetic alterations may involve changes in chromatin conformation/accessibility, post-translational histone modifications or the use of histone variants, changes in DNA methylation, alterations in levels/functions of short (small) or long non-coding RNAs (ncRNAs), or RNA modifications. While recent years have witnessed a rapid increase in available epigenetic technologies and epigenetic modulation-based treatment options, which has enabled the development/implementation of various epi-drugs in the cancer field, the epigenetic understanding of CM remains limited due to a relatively small number of epigenetic studies published to date. These studies primarily investigated DNA methylation, ncRNA (e.g., miRNA or circRNA) expression, or RNA methylation. While these initial epigenetic investigations have revealed some potential biomarkers and/or therapeutic targets, they had various limitations, and their findings warrant replication in independent and larger studies/samples. In summary, an in-depth understanding of CM epigenetics remains largely incomplete but essential for advancing our molecular knowledge and improving clinical management/outcomes of this aggressive disease.
Collapse
Affiliation(s)
- Kaylea M. Flick
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hakan Demirci
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - F. Yesim Demirci
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Ralli S, Vira T, Robles-Espinoza CD, Adams DJ, Brooks-Wilson AR. Variant ranking pipeline for complex familial disorders. Sci Rep 2024; 14:13599. [PMID: 38866901 PMCID: PMC11169219 DOI: 10.1038/s41598-024-64169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Identifying genetic susceptibility factors for complex disorders remains a challenging task. To analyze collections of small and large pedigrees where genetic heterogeneity is likely, but biological commonalities are plausible, we have developed a weights-based pipeline to prioritize variants and genes. The Weights-based vAriant Ranking in Pedigrees (WARP) pipeline prioritizes variants using 5 weights: disease incidence rate, number of cases in a family, genome fraction shared amongst cases in a family, allele frequency and variant deleteriousness. Weights, except for the population allele frequency weight, are normalized between 0 and 1. Weights are combined multiplicatively to produce family-specific-variant weights that are then averaged across all families in which the variant is observed to generate a multifamily weight. Sorting multifamily weights in descending order creates a ranked list of variants and genes for further investigation. WARP was validated using familial melanoma sequence data from the European Genome-phenome Archive. The pipeline identified variation in known germline melanoma genes POT1, MITF and BAP1 in 4 out of 13 families (31%). Analysis of the other 9 families identified several interesting genes, some of which might have a role in melanoma. WARP provides an approach to identify disease predisposing genes in studies with small and large pedigrees.
Collapse
Affiliation(s)
- Sneha Ralli
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Tariq Vira
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | | | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Angela R Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada.
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
3
|
Zob DL, Augustin I, Caba L, Panzaru MC, Popa S, Popa AD, Florea L, Gorduza EV. Genomics and Epigenomics in the Molecular Biology of Melanoma-A Prerequisite for Biomarkers Studies. Int J Mol Sci 2022; 24:ijms24010716. [PMID: 36614156 PMCID: PMC9821083 DOI: 10.3390/ijms24010716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a common and aggressive tumor originating from melanocytes. The increasing incidence of cutaneous melanoma in recent last decades highlights the need for predictive biomarkers studies. Melanoma development is a complex process, involving the interplay of genetic, epigenetic, and environmental factors. Genetic aberrations include BRAF, NRAS, NF1, MAP2K1/MAP2K2, KIT, GNAQ, GNA11, CDKN2A, TERT mutations, and translocations of kinases. Epigenetic alterations involve microRNAs, non-coding RNAs, histones modifications, and abnormal DNA methylations. Genetic aberrations and epigenetic marks are important as biomarkers for the diagnosis, prognosis, and prediction of disease recurrence, and for therapeutic targets. This review summarizes our current knowledge of the genomic and epigenetic changes in melanoma and discusses the latest scientific information.
Collapse
Affiliation(s)
- Daniela Luminita Zob
- Department of Medical Oncology, AI. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
- Correspondence: (I.A.); (L.C.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Correspondence: (I.A.); (L.C.)
| | - Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Alina Delia Popa
- Nursing Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Laura Florea
- Department of Nephrology-Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
4
|
Mannavola F, D’Oronzo S, Cives M, Stucci LS, Ranieri G, Silvestris F, Tucci M. Extracellular Vesicles and Epigenetic Modifications Are Hallmarks of Melanoma Progression. Int J Mol Sci 2019; 21:E52. [PMID: 31861757 PMCID: PMC6981648 DOI: 10.3390/ijms21010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma shows a high metastatic potential based on its ability to overcome the immune system's control. The mechanisms activated for these functions vary extremely and are also represented by the production of a number of extracellular vesicles including exosomes. Other vesicles showing a potential role in the melanoma progression include oncosomes and melanosomes and the majority of them mediate tumor processes including angiogenesis, immune regulation, and modifications of the micro-environment. Moreover, a number of epigenetic modifications have been described in melanoma and abundant production of altered microRNAs (mi-RNAs), non-coding RNAs, histones, and abnormal DNA methylation have been associated with different phases of melanoma progression. In addition, exosomes, miRNAs, and other molecular factors have been used as potential biomarkers reflecting disease evolution while others have been suggested to be potential druggable molecules for therapeutic application.
Collapse
Affiliation(s)
- Francesco Mannavola
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Stella D’Oronzo
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| | - Mauro Cives
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Girolamo Ranieri
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| | - Franco Silvestris
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Marco Tucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| |
Collapse
|
5
|
Wu H, Li Z, Tang J, Yang X, Zhou Y, Guo B, Wang L, Zhu X, Tu C, Zhang X. The in vitro and in vivo anti-melanoma effects of hydroxyapatite nanoparticles: influences of material factors. Int J Nanomedicine 2019; 14:1177-1191. [PMID: 30863053 PMCID: PMC6391145 DOI: 10.2147/ijn.s184792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Treatment for melanoma is a challenging clinical problem, and some new strategies are worth exploring. Purpose The objective of this study was to investigate the in vitro and in vivo anti-melanoma effects of hydroxyapatite nanoparticles (HANPs) and discuss the involved material factors. Materials and methods Five types of HANPs, ie, HA-A, HA-B, HA-C, HA-D, and HA-E, were prepared by wet chemical method combining with polymer template and appropriate post-treatments. The in vitro effects of the as-prepared five HANPs on inhibiting the viability of A375 melanoma cells and inducing the apoptosis of the cells were evaluated by Cell Counting Kit-8 analysis, cell nucleus morphology observation, flow cytometer, and PCR analysis. The in vivo anti-melanoma effects of HANPs were studied in the tumor model of nude mice. Results The five HANPs had different physicochemical properties, including morphology, size, specific surface area (SSA), crystallinity, and so on. By the in vitro cell study, it was found that the material factors played important roles in the anti-melanoma effect of HANPs. Among the as-prepared five HANPs, HA-A with granular shape, smaller size, higher SSA, and lower crystallinity exhibited best effect on inhibiting the viability of A375 cells. At the concentration of 200 μg/mL, HA-A resulted in the lowest cell viability (34.90%) at day 3. All the HANPs could induce the apoptosis of A375 cells, and the relatively higher apoptosis rates of the cells were found in HA-A (20.10%) and HA-B (19.41%) at day 3. However, all the HANPs showed no inhibitory effect on the viability of the normal human epidermal fibroblasts. The preliminary in vivo evaluation showed that both HA-A and HA-C could delay the formation and growth speed of melanoma tissue significantly. Likely, HA-A exhibited better effect on inhibiting the growth of melanoma tissue than HA-C. The inhibition rate of HA-A for tumor tissue growth reached 49.1% at day 23. Conclusion The current study confirmed the anti-melanoma effect of HANPs and provided a new idea for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China,
| | - Zhongtao Li
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiaoqing Tang
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China,
| | - Yong Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bo Guo
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China,
| | - Lin Wang
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China,
| | - Chongqi Tu
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China,
| |
Collapse
|
6
|
Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Cancers (Basel) 2018; 10:cancers10030059. [PMID: 29495465 PMCID: PMC5876634 DOI: 10.3390/cancers10030059] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs). While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.
Collapse
|
7
|
Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. Semin Cancer Biol 2017; 51:80-88. [PMID: 29074395 DOI: 10.1016/j.semcancer.2017.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 01/18/2023]
Abstract
Patients with malignant melanoma generally have a good prognosis if the disease presents prior to metastasis. Due to progress with targeted and immunotherapies, the median survival of metastatic melanoma patients is now over 2 years. The disease is characterised by one of the highest somatic mutation rates observed amongst cancer types, with a specific mutational signature based on UV radiation damage evident. Highly prevalent mutations, such as the BRAFV600E, in the MAPK cascade indicate truncal involvement of this pathway in the earliest stage of melanoma. The molecular sub-classification of melanoma based on genetic alterations is now well established. This has paved the way for researchers in epigenetics to investigate specific pathways of known importance, and the involvement of the diverse range of epigenetic mechanisms. Herein, we review the literature to highlight that epigenetic alterations are integrally involved in this malignancy. We focus on the most current evidence around the epigenetic mechanisms: DNA methylation and demethylation including 5-hydroxy-methylcytosine; histone post-translational modifications including variant histones; chromatin remodelling complexes and in particular the polycomb-repressive complex PRC2 and its histone methyltransferase subunit EZH2; and non-coding RNAs. Each mechanism is described generally, studies involving melanoma are assessed and clinical relevance is highlighted where possible.
Collapse
Affiliation(s)
- Bruce Moran
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland
| | - Romina Silva
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland.
| |
Collapse
|
8
|
Rizzi M, Tonello S, Estevão BM, Gianotti E, Marchese L, Renò F. Verteporfin based silica nanoparticle for in vitro selective inhibition of human highly invasive melanoma cell proliferation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 167:1-6. [PMID: 28039784 DOI: 10.1016/j.jphotobiol.2016.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/19/2022]
Abstract
Photodinamic therapy (PDT) has gained an increasing interest as a new tool to treat skin cancers such as melanoma. This clinical approach take advantage from the combination of a photosensitizer and a specific light wavelength able to induce singlet oxygen production. Mesoporous silica nanoparticles (MSNs) have been widely investigated as drug nanocarriers as their structure and morphology could be customized to produce suitable nanoplatforms enabling high cargo capacity. In the present study MSNs were successfully conjugated with the second generation photosensitizer verteporfin and the resulting nanoplatform (Ver-MSNs) was tested in an in vitro PDT model as a potential tool for melanoma treatment. Ver-MSNs based PDT did not affect cell proliferation of neither a normal human keratinocyte cell line (HaCaT) or a low mestastatic melanoma cell line (A375P). On the other hand Ver-MSNs based PDT deeply affect the highly invasive SK-MEL-28 melanoma cell line behavior, as testified by the strong reduction in cell proliferation along with the dramatic change in cellular morphology, through a nanoparticle internalization dependent mechanism. In fact, experiments performed in the presence of endocytosis inhibitors (chlorpromazine and amiloride) resulted in an attenuation of Ver-MSNs based PDT induced cell death, along with a recover in cellular morphology. MSN doped with verteporfin could thus represent a promising and useful tool for PDT treatment of highly invasive melanoma.
Collapse
Affiliation(s)
- Manuela Rizzi
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli, 17, 28100 Novara, Italy.
| | - Stelvio Tonello
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli, 17, 28100 Novara, Italy.
| | - Bianca Martins Estevão
- Dipartimento di Scienze e Innovazione Tecnologica e Centro Nano-SiSTeMI, Università del Piemonte Orientale, V. Teresa Michel 11, 15121 Alessandria, Italy; Nucleos Research of Photodynamic Therapy, Chemistry Department, State University of Maringá, Av. Colombo 5.790, 87020-900 Maringá, Paraná, Brazil.
| | - Enrica Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica e Centro Nano-SiSTeMI, Università del Piemonte Orientale, V. Teresa Michel 11, 15121 Alessandria, Italy.
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica e Centro Nano-SiSTeMI, Università del Piemonte Orientale, V. Teresa Michel 11, 15121 Alessandria, Italy.
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli, 17, 28100 Novara, Italy.
| |
Collapse
|
9
|
Formaldehyde solutions in simulated sweat increase human melanoma but not normal human keratinocyte cells proliferation. Toxicol In Vitro 2016; 37:106-112. [DOI: 10.1016/j.tiv.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/02/2016] [Accepted: 09/09/2016] [Indexed: 12/30/2022]
|