1
|
Hussain MS, Sharma S, Kumari A, Kamran A, Bahl G, Bisht AS, Sultana A, Ashique S, Ramalingam PS, Arumugam S. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: pathogenesis and therapeutic potential. Epigenomics 2024; 16:1453-1464. [PMID: 39601046 PMCID: PMC11622780 DOI: 10.1080/17501911.2024.2430170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofibromatosis (NF) is identified as genetic disorder characterized by multiple tumors on nerve tissues. NF1 is the most prevalent form, identified by neurofibromas and skin changes. NF1 is the most prevalent neurofibromatosis disorder, distinct from the rarer NF2 and schwannomatosis (SWN) conditions. NF2, including NF2-related SWN (NF2-SWN), predominantly involves schwannoma formation and differs from NF1 in its genetic basis and clinical presentation. Despite the established genetic basis of NF, effective treatments remain scarce. Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression, impacting pathways vital to tumor biology. This review explores the lncRNAs role in NF pathogenesis along with their potential as therapeutic targets. LncRNAs such as ANRIL and H19 show dysregulated expression in NF, influencing signaling pathways like Ras/MAPK and JAK/STAT, thereby contributing to tumor development. Understanding these interactions sheds light on the molecular mechanisms underlying NF and highlights lncRNAs as potential biomarkers of diagnosis and prognosis of NF. Additionally, therapeutic strategies targeting lncRNAs with antisense oligonucleotides (ASOs) or CRISPR-Cas9 offer promising treatment options. The present review emphasizes crucial role of lncRNAs in NF pathogenesis and their promise to create innovative treatments, aiming to improve patient outcomes and meet the urgent need for effective NF therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Somya Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Chandigarh, India
| | | | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University (Deemed to be University), Mangalore, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| | | | - Sivakumar Arumugam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Hegde S, Srinivas S, Nanjundappa N. KIT gene mutation causing piebaldism associated with multiple Café Au-Lait like macules and freckling: Delineating a cause of this coexistence. Indian Dermatol Online J 2023; 14:240-244. [PMID: 37089832 PMCID: PMC10115335 DOI: 10.4103/idoj.idoj_368_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 03/12/2023] Open
Abstract
Piebaldism is a rare genetic disorder of congenital leukoderma caused by mutation in KIT proto-oncogene receptor tyrosine kinase. We present a 10-year-old boy with congenital depigmented macules suggestive of piebaldism associated with café au lait macules and skin fold freckling complicating the diagnosis. A diagnosis of piebaldism was made via exome sequencing that showed a pathogenic variant of KIT gene with no pathogenic variants of NF1 or SPRED1 gene. Our current understanding of the KIT tyrosine kinase function may provide a better explanation into this phenotypic coexistence and does not necessarily represent an overlap with Neurofibromatosis type 1.
Collapse
|
3
|
Larribère L, Utikal J. NF1-Dependent Transcriptome Regulation in the Melanocyte Lineage and in Melanoma. J Clin Med 2021; 10:jcm10153350. [PMID: 34362135 PMCID: PMC8347768 DOI: 10.3390/jcm10153350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
The precise role played by the tumor suppressor gene NF1 in melanocyte biology and during the transformation into melanoma is not completely understood. In particular, understanding the interaction during melanocyte development between NF1 and key signaling pathways, which are known to be reactivated in advanced melanoma, is still under investigation. Here, we used RNAseq datasets from either situation to better understand the transcriptomic regulation mediated by an NF1 partial loss of function. We found that NF1 mutations had a differential impact on pluripotency and on melanoblast differentiation. In addition, major signaling pathways such as VEGF, senescence/secretome, endothelin, and cAMP/PKA are likely to be upregulated upon NF1 loss of function in both melanoblasts and metastatic melanoma. In sum, these data bring new light on the transcriptome regulation of the NF1-mutated melanoma subgroup and will help improve the possibilities for specific treatment.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Correspondence:
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Yang K, Oh KS, Mahalingam M. Genetic profile of naïve untreated primary cutaneous melanomas with a negative sentinel lymph node. Clin Exp Dermatol 2020; 45:1059-1062. [PMID: 32484959 DOI: 10.1111/ced.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Abstract
Sentinel lymph node (SLN) biopsy is typically offered to patients with primary cutaneous melanomas (PCMs) of ≥ 1 mm depth, but not all SLNs are positive using this cutoff. To ascertain whether positivity is genetically regulated, genetic analysis was performed using an augmented enrichment-based next-generation DNA and RNA sequencing assay in SLN-negative (Group 1, n = 8, mean depth 1.3 mm) and SLN-positive PCMs (controls, Group 2, n = 4, mean depth 1.4 mm). In Group 1, the mean number of mutations was 21 (range 3-48) with the most frequent mutations occurring in NF1 (75%) followed by TP53 (63%), CDKN2A and BRAF (38%), and NRAS (25%), while in Group 2, the ean number of mutations was 9.5 (range 5-18) with mutations in NRAS and BRAF being the most frequent (50%) followed by those in ATM, CDKN2A, CDKN2B, and NOTCH1 (25%). Increased frequency of NF1-inactivating mutations in Group 1 provides provocative early data that the presence of NF1 mutations might confer a less aggressive phenotype.
Collapse
Affiliation(s)
- K Yang
- Tufts University School of Medicine, Boston, MA, USA
| | - K S Oh
- Department of Pathology, Mount Sinai Medical Center of Florida, Miami Beach, FL, USA
| | - M Mahalingam
- Tufts University School of Medicine, Boston, MA, USA
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA Consolidated Laboratories, West Roxbury, MA, USA
| |
Collapse
|
5
|
Deraredj Nadim W, Hassanaly S, Bénédetti H, Kieda C, Grillon C, Morisset-Lopez S. The GTPase-activating protein-related domain of neurofibromin interacts with MC1R and regulates pigmentation-mediated signaling in human melanocytes. Biochem Biophys Res Commun 2020; 534:758-764. [PMID: 33187641 DOI: 10.1016/j.bbrc.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
The melanocortin 1 receptor (MC1R) is a G-protein coupled receptor (GPCR) which plays a major role in controlling melanogenesis. A large body of evidence indicates that GPCRs are part of large protein complexes that are critical for their signal transduction properties. Among proteins which may affect MC1R signaling, neurofibromin (Nf1), a GTPase activating protein (GAP) for Ras, is of special interest as it regulates adenylyl cyclase activity and ERK signaling, two pathways involved in MC1R signaling. Moreover, mutations in this gene encoding Nf1 are responsible for neurofibromatosis type I, a disease inducing hyperpigmented flat skin lesions. Using co-immunoprecipitation and Bioluminescence Resonance Energy Transfer experiments we demonstrated a physical interaction of Nf1 with MC1R. In particular, the GAP domain of Nf1 directly and constitutively interacts with MC1R in melanocytes. Pharmacologic and genetic approaches revealed that the GAP activity of Nf1 is important to regulate intracellular signaling pathways involved in melanogenesis and, consequently, melanogenic enzyme expression and melanin production. These finding shed new light on the understanding and cure of skin pigmentation disorders.
Collapse
Affiliation(s)
- Wissem Deraredj Nadim
- Centre de Biophysique Moléculaire, CNRS UPR4301 Affiliated to the University of Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Shalina Hassanaly
- Centre de Biophysique Moléculaire, CNRS UPR4301 Affiliated to the University of Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR4301 Affiliated to the University of Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR4301 Affiliated to the University of Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, CNRS UPR4301 Affiliated to the University of Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Severine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR4301 Affiliated to the University of Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| |
Collapse
|
6
|
NF1-RAC1 axis regulates migration of the melanocytic lineage. Transl Oncol 2020; 13:100858. [PMID: 32891903 PMCID: PMC7484592 DOI: 10.1016/j.tranon.2020.100858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
Metastases's spreading is the main cause of mortality for advanced stage cancer patients, including melanoma. The formation of metastases is favored by enhanced migratory and invasive capacities of tumor cells. Tumor suppressor gene NF1 is a negative regulator of RAS and its deregulation plays an important role in several aspects of melanoma transformation and progression. However, very little is described about the role of NF1 in cellular migration and invasion. In this study, our results show on the one hand, that the loss of NF1 expression delays migration of human melanoblasts via a RAC1-dependent mechanism. On the other hand, our data indicate that NF1 loss in melanoma cells is enhancing migration, intravasation and metastases formation in vivo. Moreover, not only this phenotype is associated with an upregulation of PREX1 but also patient-derived melanoma samples with low NF1 expression present increased levels of PREX1. In sum, our study brings new elements on the mechanism controlling cellular migration in the context of NF1 loss. These data are of prime interest to improve treatment strategies against all NF1-mutated tumors, including this subtype of melanoma.
Collapse
|
7
|
Hillen LM, Geybels MS, Spassova I, Becker JC, Gambichler T, Garmyn M, Zur Hausen A, van den Oord J, Winnepenninckx V. A digital mRNA expression signature to classify challenging Spitzoid melanocytic neoplasms. FEBS Open Bio 2020; 10:1326-1341. [PMID: 32431053 PMCID: PMC7327909 DOI: 10.1002/2211-5463.12897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/21/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Spitzoid neoplasms are a challenging group of cutaneous melanocytic proliferations. They are characterized by epithelioid and/or spindle-shaped melanocytes and classified as benign Spitz nevi (SN), atypical Spitz tumors (AST), or malignant Spitz tumors (MST). The intermediate AST category represents a diagnostically challenging group since on purely histopathological grounds, their benign or malignant character remains unpredictable. This results in uncertainties in patient treatment and prognosis. The molecular properties of Spitzoid lesions, especially their transcriptomic landscape, remain poorly understood, and genomic alterations in melanoma-associated oncogenes are typically absent. The aim of this study was to characterize their transcriptome with digital mRNA expression profiling. Formalin-fixed paraffin-embedded samples (including 27 SN, 10 AST, and 14 MST) were analyzed using the NanoString nCounter PanCancer Pathways Panel. The number of significantly differentially expressed genes in SN vs. MST, SN vs. AST, and AST vs. MST was 68, 167, and 18, respectively. Gene set enrichment analysis revealed upregulation of pathways related to epithelial-mesenchymal transition and immunomodulatory-, angiogenesis-, hormonal-, and myogenesis-associated processes in AST and MST. A molecular signature of SN vs. MST was discovered based on the top-ranked most informative genes: NRAS, NF1, BMP2, EIF2B4, IFNA17, and FZD9. The AST samples showed intermediate levels of the identified signature. This implies that the gene signature can potentially be used to distinguish high-grade from low-grade AST with a larger study cohort in the future. This combined histopathological and transcriptomic methodology is promising for prospective diagnostics of Spitzoid neoplasms and patient management in dermatological oncology.
Collapse
Affiliation(s)
- Lisa M Hillen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Milan S Geybels
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ivelina Spassova
- Department for Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Jürgen C Becker
- Department for Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.,Deutsches Krebsforschungsinstitut (DKFZ), Heidelberg, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Marjan Garmyn
- Laboratory of Dermatology, Department of Oncology and Department of Dermatology, University Hospitals Leuven, University of Leuven KUL, Leuven, Belgium
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Joost van den Oord
- Department of Pathology, University Hospitals of Leuven, University of Leuven KUL, Leuven, Belgium.,Laboratory Translational Cell and Tissue Research, University of Leuven, KU, Leuven, Belgium
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
8
|
Vanneste M, Feddersen CR, Varzavand A, Zhu EY, Foley T, Zhao L, Holt KH, Milhem M, Piper R, Stipp CS, Dupuy AJ, Henry MD. Functional Genomic Screening Independently Identifies CUL3 as a Mediator of Vemurafenib Resistance via Src-Rac1 Signaling Axis. Front Oncol 2020; 10:442. [PMID: 32346533 PMCID: PMC7169429 DOI: 10.3389/fonc.2020.00442] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with malignant melanoma have a 5-year survival rate of only 15-20% once the tumor has metastasized to distant tissues. While MAP kinase pathway inhibitors (MAPKi) are initially effective for the majority of patients with melanoma harboring BRAFV600E mutation, over 90% of patients relapse within 2 years. Thus, there is a critical need for understanding MAPKi resistance mechanisms. In this manuscript, we performed a forward genetic screen using a whole genome shRNA library to identify negative regulators of vemurafenib resistance. We identified loss of NF1 and CUL3 as drivers of vemurafenib resistance. NF1 is a known driver of vemurafenib resistance in melanoma through its action as a negative regulator of RAS. However, the mechanism by which CUL3, a key protein in E3 ubiquitin ligase complexes, is involved in vemurafenib resistance was unknown. We found that loss of CUL3 was associated with an increase in RAC1 activity and MEKS298 phosphorylation. However, the addition of the Src family inhibitor saracatinib prevented resistance to vemurafenib in CUL3KD cells and reversed RAC1 activation. This finding suggests that inhibition of the Src family suppresses MAPKi resistance in CUL3KD cells by inactivation of RAC1. Our results also indicated that the loss of CUL3 does not promote the activation of RAC1 through stabilization, suggesting that CUL3 is involved in the stability of upstream regulators of RAC1. Collectively, our study identifies the loss of CUL3 as a driver of MAPKi resistance through activation of RAC1 and demonstrates that inhibition of the Src family can suppress the MAPKi resistance phenotype in CUL3KD cells by inactivating RAC1 protein.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Charlotte R. Feddersen
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Afshin Varzavand
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Elliot Y. Zhu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Tyler Foley
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Kathleen H. Holt
- Viral Vector Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mohammed Milhem
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Robert Piper
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Christopher S. Stipp
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Department of Urology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
9
|
Larribère L, Utikal J. Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Front Mol Neurosci 2019; 12:111. [PMID: 31118886 PMCID: PMC6506783 DOI: 10.3389/fnmol.2019.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
During development, neural crest (NC) cells are early precursors of several lineages including melanocytes. Along their differentiation from multipotent cells to mature melanocytes, NC cells will go through successive steps which require either proliferative or motile capacities. For example, they will undergo Epithelial to Mesenchymal Transition (EMT) in order the separate from the neural tube and migrate to their final location in the epidermis (Larribere and Utikal, 2013; Skrypek et al., 2017). The differentiated melanocytes are the cells of origin of melanoma tumors which progress through several stages such as radial growth phase, vertical growth phase, metastasis formation, and often resistance to current therapies. Interestingly, depending on the stage of the disease, melanoma tumor cells share phenotypes with NC cells (proliferative, motile, EMT). These phenotypes are tightly controlled by specific signaling pathways and transcription factors (TFs) which tend to be reactivated during the onset of melanoma. In this review, we summarize first the main TFs which control these common phenotypes. Then, we focus on the existing strategies used to generate human NCs. Finally we discuss how identification and regulation of NC-associated genes provide an additional approach to improving current melanoma targeted therapies.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
Leichsenring J, Stögbauer F, Volckmar AL, Buchhalter I, Oliveira C, Kirchner M, Fröhling S, Hassel J, Enk A, Schirmacher P, Endris V, Penzel R, Stenzinger A. Genetic profiling of melanoma in routine diagnostics: assay performance and molecular characteristics in a consecutive series of 274 cases. Pathology 2018; 50:703-710. [DOI: 10.1016/j.pathol.2018.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
|
11
|
Sadozai H, Gruber T, Hunger RE, Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front Immunol 2017; 8:1617. [PMID: 29276510 PMCID: PMC5727014 DOI: 10.3389/fimmu.2017.01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
The global health burden associated with melanoma continues to increase while treatment options for metastatic melanoma are limited. Nevertheless, in the past decade, the field of cancer immunotherapy has witnessed remarkable advances for the treatment of a number of malignancies including metastatic melanoma. Although the earliest observations of an immunological antitumor response were made nearly a century ago, it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic option, in particular for cutaneous melanoma. As such, melanoma remains the focus of various preclinical and clinical studies to understand the immunobiology of cancer and to test various tumor immunotherapies. Here, we review key recent developments in the field of immune-mediated therapy of melanoma. Our primary focus is on therapies that have received regulatory approval. Thus, a brief overview of the pathophysiology of melanoma is provided. The purported functions of various tumor-infiltrating immune cell subsets are described, in particular the recently described roles of intratumoral dendritic cells. The section on immunotherapies focuses on strategies that have proved to be the most clinically successful such as immune checkpoint blockade. Prospects for novel therapeutics and the potential for combinatorial approaches are delineated. Finally, we briefly discuss nanotechnology-based platforms which can in theory, activate multiple arms of immune system to fight cancer. The promising advances in the field of immunotherapy signal the dawn of a new era in cancer treatment and warrant further investigation to understand the opportunities and barriers for future progress.
Collapse
Affiliation(s)
- Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
The NF1 gene in tumor syndromes and melanoma. J Transl Med 2017; 97:146-157. [PMID: 28067895 PMCID: PMC5413358 DOI: 10.1038/labinvest.2016.142] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/10/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Activation of the RAS/MAPK pathway is critical in melanoma. Melanoma can be grouped into four molecular subtypes based on their main genetic driver: BRAF-mutant, NRAS-mutant, NF1-mutant, and triple wild-type tumors. The NF1 protein, neurofibromin 1, negatively regulates RAS proteins through GTPase activity. Germline mutations in NF1 cause neurofibromatosis type I, a common genetic tumor syndrome caused by dysregulation of the RAS/MAPK pathway, ie, RASopathy. Melanomas with NF1 mutations typically occur on chronically sun-exposed skin or in older individuals, show a high mutation burden, and are wild-type for BRAF and NRAS. Additionally, NF1 mutations characterize certain clinicopathologic melanoma subtypes, specifically desmoplastic melanoma. This review discusses the current knowledge of the NF1 gene and neurofibromin 1 in neurofibromatosis type I and in melanoma.
Collapse
|
13
|
Mahalingam M. NF1 and Neurofibromin: Emerging Players in the Genetic Landscape of Desmoplastic Melanoma. Adv Anat Pathol 2017; 24:1-14. [PMID: 27941538 DOI: 10.1097/pap.0000000000000131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neurofibromatosis type I (NF1), a monogenic disorder with an autosomal dominant mode of inheritance, is caused by alterations in the NF1 gene which codes for the protein neurofibromin. Functionally, NF1 is a tumor suppressor as it is GTPase-activating protein that negatively regulates the MAPK pathway. More recently, much attention has focused on the role of NF1 and neurofibromin in melanoma as mutations in NF1 have been found to constitute 1 of the 4 distinct genomic categories of melanoma, with the other 3 comprising BRAF, NRAS, and "triple-wild-type" subtypes. In this review, we parse the literature on NF1 and neurofibromin with a view to clarifying and gaining a better understanding of their precise role/s in melanomagenesis. We begin with a historic overview, followed by details regarding structure and function and characterization of neural crest development as a model for genetic reversion in neoplasia. Melanogenesis in NF1 sets the stage for the discussion on the roles of NF1 and neurofibromin in neural crest-derived neoplasms including melanoma with particular emphasis on NF1 and neurofibromin as markers of melanocyte dedifferentiation in desmoplastic melanoma.
Collapse
Affiliation(s)
- Meera Mahalingam
- VA Consolidated Laboratories, Department of Pathology and Laboratory Medicine, Dermatopathology Section, West Roxbury, MA
| |
Collapse
|