1
|
Guida S, Puig S, DI Resta C, Sallustio F, Mangano E, Stabile G, Longo C, Pellacani G, Guida G, Rongioletti F. Melanocortin-1 receptor (MC1R): a review for dermatologists. Ital J Dermatol Venerol 2024; 159:285-293. [PMID: 38376504 DOI: 10.23736/s2784-8671.24.07839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Melanocortin-1 receptor (MC1R) and its variants have a pivotal role in melanin synthesis. However, MC1R has been associated to non-pigmentary pathways related to DNA-repair activities and inflammation. The aim of this review is to provide an up-to-date overview about the role of MC1R in the skin. Specifically, after summarizing the current knowledge about MC1R structure and polymorphisms, we report data concerning the correlation between MC1R, phenotypic traits, skin aging, other diseases and skin cancers and their risk assessment through genetic testing.
Collapse
Affiliation(s)
- Stefania Guida
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy -
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy -
| | - Susana Puig
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, University of Barcelona, Barcelona, Spain
| | - Chiara DI Resta
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Mangano
- Institute of Biomedical Technologies (ITB), National Research Center (CNR), Segrate, Milan, Italy
| | - Giorgio Stabile
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Skin Cancer Center, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Gabriella Guida
- Section of Molecular Biology, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Aldo Moro University of Bari, Bari, Italy
| | - Franco Rongioletti
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
3
|
Chelakkot VS, Thomas K, Romigh T, Fong A, Li L, Ronen S, Chen S, Funchain P, Ni Y, Arbesman J. MC1R signaling through the cAMP-CREB/ATF-1 and ERK-NFκB pathways accelerates G1/S transition promoting breast cancer progression. NPJ Precis Oncol 2023; 7:85. [PMID: 37679505 PMCID: PMC10485002 DOI: 10.1038/s41698-023-00437-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
MC1R, a G-protein coupled receptor, triggers ultraviolet light-induced melanin synthesis and DNA repair in melanocytes and is implicated in the pathogenesis of melanoma. Although widely expressed in different tissue types, its function in non-cutaneous tissue is relatively unknown. Herein, we demonstrate that disruptive MC1R variants associated with melanomagenesis are less frequently found in patients with several cancers. Further exploration revealed that breast cancer tissue shows a significantly higher MC1R expression than normal breast tissue, and knocking down MC1R significantly reduced cell proliferation in vitro and in vivo. Mechanistically, MC1R signaling through the MC1R-cAMP-CREB/ATF-1 and MC1R-ERK-NFκB axes accelerated the G1-S transition in breast cancer cells. Our results revealed a new association between MC1R and breast cancer, which could be potentially targeted therapeutically. Moreover, our results suggest that MC1R-enhancing/activating therapies should be used cautiously, as they might be pro-tumorigenic in certain contexts.
Collapse
Affiliation(s)
- Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kiara Thomas
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Todd Romigh
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Fong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lin Li
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shira Ronen
- Department of Anatomic Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuyang Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pauline Funchain
- Department of Hematology & Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Joshua Arbesman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Dermatology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Manganelli M, Guida S, Ferretta A, Pellacani G, Porcelli L, Azzariti A, Guida G. Behind the Scene: Exploiting MC1R in Skin Cancer Risk and Prevention. Genes (Basel) 2021; 12:1093. [PMID: 34356109 PMCID: PMC8305013 DOI: 10.3390/genes12071093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma and non-melanoma skin cancers (NMSCs) are the most frequent cancers of the skin in white populations. An increased risk in the development of skin cancers has been associated with the combination of several environmental factors (i.e., ultraviolet exposure) and genetic background, including melanocortin-1 receptor (MC1R) status. In the last few years, advances in the diagnosis of skin cancers provided a great impact on clinical practice. Despite these advances, NMSCs are still the most common malignancy in humans and melanoma still shows a rising incidence and a poor prognosis when diagnosed at an advanced stage. Efforts are required to underlie the genetic and clinical heterogeneity of melanoma and NMSCs, leading to an optimization of the management of affected patients. The clinical implications of the impact of germline MC1R variants in melanoma and NMSCs' risk, together with the additional risk conferred by somatic mutations in other peculiar genes, as well as the role of MC1R screening in skin cancers' prevention will be addressed in the current review.
Collapse
Affiliation(s)
- Michele Manganelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
- DMMT-Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefania Guida
- Department of Surgical-Medical-Dental and Morphological Science with Interest Transplant-Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00161 Rome, Italy;
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.P.); (A.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.P.); (A.A.)
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
| |
Collapse
|
5
|
Tomatine Displays Antitumor Potential in In Vitro Models of Metastatic Melanoma. Int J Mol Sci 2020; 21:ijms21155243. [PMID: 32718103 PMCID: PMC7432453 DOI: 10.3390/ijms21155243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
There is a growing interest in the cytotoxic effects of bioactive glycoalkaloids, such as α-tomatine on tumor cells. Here, for the first time, we determine the antitumor potential of tomatine, a mixture of α-tomatine and dehydrotomatine, in metastatic melanoma (MM) cell lines harboring different BRAF and MC1R variants. We performed cytotoxicity experiments and annexin-V/propidium iodide staining to assess the apoptotic/necrotic status of the cells. ER stress and autophagy markers were revealed by Western Blot, whereas antiangiogenic and vascular-disrupting effects were evaluated through a capillary tube formation assay on matrigel and by ELISA kit for VEGF release determination. Cell invasion was determined by a Boyden chamber matrigel assay. Tomatine reduced 50% of cell viability and induced a concentration-dependent increase of apoptotic cells in the range of 0.5–1 μM in terms of α-tomatine. The extent of apoptosis was more than two-fold higher in V600BRAF-D184H/D184H MC1R cells than in BRAF wild-type cells and V600BRAF-MC1R wild-type cell lines. Additionally, tomatine increased the LC3I/II autophagy marker, p-eIF2α, and p-Erk1/2 levels in BRAF wild-type cells. Notably, tomatine strongly reduced cell invasion and melanoma-dependent angiogenesis by reducing VEGF release and tumor-stimulating effects on capillary tube formation. Collectively, our findings support tomatine as a potential antitumor agent in MM.
Collapse
|
6
|
Guida S, Ciardo S, De Pace B, De Carvalho N, Peccerillo F, Manfredini M, Farnetani F, Chester J, Kaleci S, Manganelli M, Guida G, Pellacani G. The influence of MC1R on dermal morphological features of photo-exposed skin in women revealed by reflectance confocal microscopy and optical coherence tomography. Exp Dermatol 2019; 28:1321-1327. [PMID: 31520496 DOI: 10.1111/exd.14037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The melanocortin 1 receptor (MC1R) gene is one of the major determinants of skin pigmentation. It is a highly polymorphic gene and some of its polymorphisms have been related to specific skin phenotypes, increased risk of skin cancers and skin photoageing. Currently, its contribution to changes in dermal features in photo-exposed skin is unknown. OBJECTIVE The main objective of this study is to evaluate the potential correlation between MC1R status and specific healthy photo-exposed skin characteristics. MATERIALS AND METHODS Skin facial features were estimated by evaluation with standard digital photography with automated features count, reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) in 100 healthy women. Skin of the forearms was used as a control. RESULTS The study found an association between RHC MC1R polymorphisms and dermal features in photo-exposed areas being represented by increased vessel density and pixel density in OCT (P = .025 and P = .001, respectively) and increased coarse collagen in RCM (P = .034), as compared to non-RHC subjects. To our knowledge this is previously unreported. Additionally, previously reported correlations between light hair colour and pigmented spots with MC1R RHC polymorphisms have been confirmed. CONCLUSIONS Our results suggest the role of RHC MC1R variants in dermal variations of facial skin, as compared to non-RHC variants. To our knowledge this is previously unreported.
Collapse
Affiliation(s)
- Stefania Guida
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvana Ciardo
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara De Pace
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Nathalie De Carvalho
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Peccerillo
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Manfredini
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Farnetani
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Chester
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Shaniko Kaleci
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Manganelli
- Molecular Biology Section, Department of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Gabriella Guida
- Molecular Biology Section, Department of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Giovanni Pellacani
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Science with Interest Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Tagliabue E, Gandini S, Bellocco R, Maisonneuve P, Newton-Bishop J, Polsky D, Lazovich D, Kanetsky PA, Ghiorzo P, Gruis NA, Landi MT, Menin C, Fargnoli MC, García-Borrón JC, Han J, Little J, Sera F, Raimondi S. MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: a pooled analysis from the M-SKIP project. Cancer Manag Res 2018; 10:1143-1154. [PMID: 29795986 PMCID: PMC5958947 DOI: 10.2147/cmar.s155283] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Melanoma represents an important public health problem, due to its high case-fatality rate. Identification of individuals at high risk would be of major interest to improve early diagnosis and ultimately survival. The aim of this study was to evaluate whether MC1R variants predicted melanoma risk independently of at-risk phenotypic characteristics. MATERIALS AND METHODS Data were collected within an international collaboration - the M-SKIP project. The present pooled analysis included data on 3,830 single, primary, sporadic, cutaneous melanoma cases and 2,619 controls from seven previously published case-control studies. All the studies had information on MC1R gene variants by sequencing analysis and on hair color, skin phototype, and freckles, ie, the phenotypic characteristics used to define the red hair phenotype. RESULTS The presence of any MC1R variant was associated with melanoma risk independently of phenotypic characteristics (OR 1.60; 95% CI 1.36-1.88). Inclusion of MC1R variants in a risk prediction model increased melanoma predictive accuracy (area under the receiver-operating characteristic curve) by 0.7% over a base clinical model (P=0.002), and 24% of participants were better assessed (net reclassification index 95% CI 20%-30%). Subgroup analysis suggested a possibly stronger role of MC1R in melanoma prediction for participants without the red hair phenotype (net reclassification index: 28%) compared to paler skinned participants (15%). CONCLUSION The authors suggest that measuring the MC1R genotype might result in a benefit for melanoma prediction. The results could be a valid starting point to guide the development of scientific protocols assessing melanoma risk prediction tools incorporating the MC1R genotype.
Collapse
Affiliation(s)
- Elena Tagliabue
- Clinical Trial Center, Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Rino Bellocco
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - David Polsky
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - DeAnn Lazovich
- Division of Epidemiology and Community Health, University of Minnesota, MN
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua
| | | | - Jose Carlos García-Borrón
- Department of Biochemistry, Molecular Biology, and Immunology, University of Murcia
- IMIB-Arrixaca, Murcia, Spain
| | - Jiali Han
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Francesco Sera
- Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| |
Collapse
|
8
|
Guida S, Foti C, Manganelli M, Bartolomeo N, Pellacani G, Bonamonte D, Filotico R, Guida G. MC1R genotype and psoriasis: is there a link revealing a phenotypic difference? J Eur Acad Dermatol Venereol 2018; 32:e119-e120. [DOI: 10.1111/jdv.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Guida
- Dermatology Unit; University of Modena and Reggio Emilia; Modena Italy
| | - C. Foti
- Dermatological Clinic; Department of Biomedical Science and Human Oncology; University of Bari; Bari Italy
| | - M. Manganelli
- Molecular Biology Section; Department of Basic Medical Sciences; Neurosciences and Sense Organs; University of Bari; Bari Italy
| | - N. Bartolomeo
- Hygiene Section; Department of Biomedical Sciences and Human Oncology; University of Bari; Bari Italy
| | - G. Pellacani
- Dermatology Unit; University of Modena and Reggio Emilia; Modena Italy
| | - D. Bonamonte
- Dermatological Clinic; Department of Biomedical Science and Human Oncology; University of Bari; Bari Italy
| | - R. Filotico
- Dermatology Unit; Hospital “A. Perrino”; Brindisi Italy
| | - G. Guida
- Molecular Biology Section; Department of Basic Medical Sciences; Neurosciences and Sense Organs; University of Bari; Bari Italy
| |
Collapse
|