1
|
El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad-Kazan H, Thiébaud P, Rezvani HR. Xenopus as a model system for studying pigmentation and pigmentary disorders. Pigment Cell Melanoma Res 2024. [PMID: 38849973 DOI: 10.1111/pcmr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.
Collapse
Affiliation(s)
- Joudi El Mir
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Ali Nasrallah
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Nadine Thézé
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Muriel Cario
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
- Aquiderm, University of Bordeaux, Bordeaux, France
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Hadath, Lebanon
| | - Pierre Thiébaud
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Hamid-Reza Rezvani
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
- Aquiderm, University of Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Cario M, Scalia J, Mahfouf W, Muzotte E, Michaud V, Plaisant C, Dupuy JW, Douki T, Morice-Picard F, Rambert J, Perrier E, Trompezinski S, Rezvani HR. Proteome characterization of XPC-deficient melanocytes generated by CRISPR-Cas9 technology reveals alteration in the expression of several hundred proteins. J Dermatol Sci 2024; 114:79-82. [PMID: 38556435 DOI: 10.1016/j.jdermsci.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Muriel Cario
- Univ. Bordeaux, Inserm, BRIC, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France
| | - Julie Scalia
- NAOS Institute of Life Science, Aix-en-Provence, France
| | | | | | | | | | | | - Thierry Douki
- Nucleic Acids Lesions Laboratory, SCIB/INAC, CEA, Universite´ Joseph Fourier- Grenoble, Grenoble, France
| | - Fanny Morice-Picard
- Univ. Bordeaux, Inserm, BRIC, Bordeaux, France; Paediatric Dermatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Jérôme Rambert
- Univ. Bordeaux, Inserm, BRIC, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France
| | - Eric Perrier
- NAOS Institute of Life Science, Aix-en-Provence, France
| | | | - Hamid-Reza Rezvani
- Univ. Bordeaux, Inserm, BRIC, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
3
|
Implications of Oxidative Stress in the Pathogenesis and Treatment of Hyperpigmentation Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7881717. [PMID: 35087618 PMCID: PMC8789419 DOI: 10.1155/2022/7881717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress represents an imbalance between the generation of reactive oxygen and nitrogen species and the ability of antioxidant systems to decompose those products. Oxidative stress is implicated in the pathogenesis of hyperpigmentation, hypopigmentation, melanoma, and other skin diseases. Regulatory networks involving oxidative stress and related pathways are widely represented in hypopigmentation diseases, particularly vitiligo. However, there is no complete review into the role of oxidative stress in the pathogenesis of hyperpigmentation disorders, especially regarding associations involving oxidative stress and cellular signaling pathways. Here, we review oxidative and antioxidant systems, oxidative stress-induced signal transduction mechanisms, and effects of antioxidant drugs used in preclinical and clinical settings in hyperpigmentation disorders.
Collapse
|
4
|
Chan TK, Bramono D, Bourokba N, Krishna V, Wang ST, Neo BH, Lim RYX, Kim H, Misra N, Lim S, Betts RJ. Polycyclic aromatic hydrocarbons regulate the pigmentation pathway and induce DNA damage responses in keratinocytes, a process driven by systemic immunity. J Dermatol Sci 2021; 104:83-94. [PMID: 34690024 DOI: 10.1016/j.jdermsci.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Urban pollution is correlated with an increased prevalence of skin pigmentation disorders, however the physiological processes underlying this association are unclear. OBJECTIVES To delineate the relationship between polycyclic aromatic hydrocarbons (PAHs), a key constituent of atmospheric pollution, and immunity/skin pigmentation pathways. METHODS We exposed peripheral blood mononuclear cells (PBMC) to PAHs and performed cytokines/chemokine profiling. We then examined the effect of immune activation on pigmentation by co-culturing PBMC and Benzo(a)pyrene (BaP) with reconstructed human pigmented epidermis (RHPE). To study the mechanism, we treated keratinocytes with conditioned medium from BaP-exposed PBMC and studied DNA damage responses, aryl hydrocarbon receptor (AhR) activation and pro-pigmentation factor, proopiomelanocortin (POMC) secretion. RESULTS PAHs induced up-regulation of inflammatory cytokines/chemokine in PBMC. Co-culturing of RHPE with PBMC+BaP resulted in increased melanin content and localization. BaP-conditioned medium significantly increased DNA damage, p53 stabilization, AhR activation and POMC secretion in keratinocytes. We found that IFNγ induced DNA damage, while TNFα and IL-8 potentiated POMC secretion in keratinocytes. Importantly, BaP-conditioned medium-induced DNA damage and POMC secretion is prevented by antioxidants vitamin E, vitamin C and sulforaphane, as well as the prototypical corticosteroid dexamethasone. Finally, vitamin C and sulforaphane enhanced the genome protective and depigmentation effects of dexamethasone, providing proof-of-concept for a combinatorial approach for the prevention and/or correction of PAH-induced pigment spots formation. CONCLUSION Our study reveals the importance of systemic immunity in regulating PAH-induced skin pigmentation, and provide a new keratinocyte DNA damage response mechanistic target for the prevention or reversal of pollution-associated skin pigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hyoju Kim
- L'Oréal Research & Innovation, Singapore
| | - Namita Misra
- L'Oréal Research & Innovation, Aulnay sous Bois, France
| | - Shawn Lim
- L'Oréal Research & Innovation, Singapore
| | | |
Collapse
|
5
|
Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Hereditary Hearing Impairment with Cutaneous Abnormalities. Genes (Basel) 2020; 12:43. [PMID: 33396879 PMCID: PMC7823799 DOI: 10.3390/genes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. Our in-depth analyses revealed that the cutaneous manifestations associated with HHI could be classified into three categories: pigment, hyperkeratosis/nail, and connective tissue disorders, with each category involving distinct molecular pathogenesis mechanisms. This outline could help clinicians and researchers build a clear atlas regarding the phenotypic features and pathogenetic mechanisms of syndromic HHI with cutaneous abnormalities, and facilitate clinical and molecular diagnoses of these conditions.
Collapse
Affiliation(s)
- Tung-Lin Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|