1
|
Schield DR, Carter JK, Scordato ESC, Levin II, Wilkins MR, Mueller SA, Gompert Z, Nosil P, Wolf JBW, Safran RJ. Sexual selection promotes reproductive isolation in barn swallows. Science 2024; 386:eadj8766. [PMID: 39666856 DOI: 10.1126/science.adj8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024]
Abstract
Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Javan K Carter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Iris I Levin
- Department of Biology, Kenyon College, Gambier, OH, USA
| | - Matthew R Wilkins
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Galactic Polymath Education Studio, Minneapolis, MN, USA
| | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Patrik Nosil
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
2
|
Takemori C, Koyanagi-Aoi M, Fukumoto T, Kunisada M, Wakamatsu K, Ito S, Hosaka C, Takeuchi S, Kubo A, Aoi T, Nishigori C. Revealing the UV response of melanocytes in xeroderma pigmentosum group A using patient-derived induced pluripotent stem cells. J Dermatol Sci 2024; 115:111-120. [PMID: 39033075 DOI: 10.1016/j.jdermsci.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is characterized by photosensitivity that causes pigmentary disorder and predisposition to skin cancers on sunlight-exposed areas due to DNA repair deficiency. Patients with XP group A (XP-A) develop freckle-like pigmented maculae and depigmented maculae within a year unless strict sun-protection is enforced. Although it is crucial to study pigment cells (melanocytes: MCs) as disease target cells, establishing MCs in primary cultures is challenging. OBJECTIVE Elucidation of the disease pathogenesis by comparison between MCs differentiated from XP-A induced pluripotent stem cells (iPSCs) and healthy control iPSCs on the response to UV irradiation. METHODS iPSCs were established from a XP-A fibroblasts and differentiated into MCs. Differences in gene expression profiles between XP-A-iPSC-derived melanocytes (XP-A-iMCs) and Healthy control iPSC-derived MCs (HC-iMCs) were analyzed 4 and 12 h after irradiation with 30 or 150 J/m2 of UV-B using microarray analysis. RESULTS XP-A-iMCs expressed SOX10, MITF, and TYR, and showed melanin synthesis. Further, XP-A-iMCs showed reduced DNA repair ability. Gene expression profile between XP-A-iMCs and HC-iMCs revealed that, numerous gene probes that were specifically upregulated or downregulated in XP-A-iMCs after 150-J/m2 of UV-B irradiation did not return to basal levels. Of note that apoptotic pathways were highly upregulated at 150 J/m2 UV exposure in XP-A-iMCs, and cytokine-related pathways were upregulated even at 30 J/m2 UV exposure. CONCLUSION We revealed for the first time that cytokine-related pathways were upregulated even at low-dose UV exposure in XP-A-iMCs. Disease-specific iPSCs are useful to elucidate the disease pathogenesis and develop treatment strategies of XP.
Collapse
Affiliation(s)
- Chihiro Takemori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Makoto Kunisada
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Department of Dermatology, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Chieko Hosaka
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan.
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| |
Collapse
|
3
|
Wang X, Wu W, Chen J, Li C, Li S. Management of the refractory vitiligo patient: current therapeutic strategies and future options. Front Immunol 2024; 14:1294919. [PMID: 38239366 PMCID: PMC10794984 DOI: 10.3389/fimmu.2023.1294919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Vitiligo is an autoimmune disease that leads to disfiguring depigmented lesions of skin and mucosa. Although effective treatments are available for vitiligo, there are still some patients with poor responses to conventional treatment. Refractory vitiligo lesions are mostly located on exposed sites such as acral sites and lips, leading to significant life stress. Understanding the causes of refractory vitiligo and developing targeted treatments are essential to enhance vitiligo outcomes. In this review, we summarized recent treatment approaches and some potential methods for refractory vitiligo. Janus kinase inhibitors have shown efficacy in refractory vitiligo. A variety of surgical interventions and fractional carbon dioxide laser have been widely applied to combination therapies. Furthermore, melanocyte regeneration and activation therapies are potentially effective strategies. Patients with refractory vitiligo should be referred to psychological monitoring and interventions to reduce the potential pathogenic effects of chronic stress. Finally, methods for depigmentation and camouflage may be beneficial in achieving uniform skin color and improved quality of life. Our ultimate focus is to provide alternative options for refractory vitiligo and to bring inspiration to future research.
Collapse
Affiliation(s)
| | | | | | | | - Shuli Li
- *Correspondence: Shuli Li, ; Chunying Li,
| |
Collapse
|
4
|
Kobori C, Takagi R, Yokomizo R, Yoshihara S, Mori M, Takahashi H, Javaregowda PK, Akiyama T, Ko MSH, Kishi K, Umezawa A. Functional and long-lived melanocytes from human pluripotent stem cells with transient ectopic expression of JMJD3. Stem Cell Res Ther 2023; 14:242. [PMID: 37679843 PMCID: PMC10486068 DOI: 10.1186/s13287-023-03479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Melanocytes are an essential part of the epidermis, and their regeneration has received much attention because propagation of human adult melanocytes in vitro is too slow for clinical use. Differentiation from human pluripotent stem cells to melanocytes has been reported, but the protocols to produce them require multiple and complex differentiation steps. METHOD We differentiated human embryonic stem cells (hESCs) that transiently express JMJD3 to pigmented cells. We investigated whether the pigmented cells have melanocytic characteristics and functions by qRT-PCR, immunocytochemical analysis and flow cytometry. We also investigated their biocompatibility by injecting the cells into immunodeficient mice for clinical use. RESULT We successfully differentiated and established a pure culture of melanocytes. The melanocytes maintained their growth rate for a long time, approximately 200 days, and were functional. They exhibited melanogenesis and transfer of melanin to peripheral keratinocytes. Moreover, melanocytes simulated the developmental processes from melanoblasts to melanocytes. The melanocytes had high engraftability and biocompatibility in the immunodeficient mice. CONCLUSION The robust generation of functional and long-lived melanocytes are key to developing clinical applications for the treatment of pigmentary skin disorders.
Collapse
Affiliation(s)
- Chie Kobori
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ryo Takagi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Ryo Yokomizo
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Sakie Yoshihara
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Mai Mori
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroto Takahashi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Palaksha Kanive Javaregowda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- SDM Research Institute for Biomedical Sciences, A Constituent Unit of Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
5
|
Xie Y, Xu Z, Shi W, Mei X. Biological function and application of melanocytes induced and transformed by mouse bone marrow mesenchymal stem cells. Regen Ther 2022; 21:148-156. [PMID: 35844295 PMCID: PMC9260302 DOI: 10.1016/j.reth.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background A large number of autologous melanocytes are required for surgical treatment of depigmentation diseases such as vitiligo. The purpose of this experiment is to explore the application of melanocytes induced by mesenchymal stem cells to clinical treatment. Therefore, we have induced mouse bone marrow mesenchymal stem cells (BMMSCs) into melanocytes (miMels) in the previous experiment. This experiment continues the previous experiment to further study the biological functions of miMels and their application in tissue engineering. Methods We examined whether miMels can produce active tyrosinase, melanin, and response to α-MSH. The ability of miMels to produce melanin to keratinocytes was tested by co-culture. By applying miMels to tissue-engineered skin, the survival and function of miMels on the surface of nude mice were verified. Results MiMels can produce active tyrosinase and melanin, and can pass melanin to the co-cultured keratinocytes. Under the stimulation of α-MSH, the active tyrosinase and melanin content of miMels increased. We tried to apply it to the establishment of tissue-engineered skin and obtained tissue-engineered skin containing miMels. Then we tried to transplant tissue-engineered skin on the back skin of nude mice and succeeded. The transplanted miMels survived in local tissues, synthesized active tyrosinase and melanin, and expressed the marker protein of melanocytes. Conclusion In short, miMels can be used as a cell source for tissue engineering skin. MiMels not only have a typical melanocyte morphology but also have the same biological functions as normal melanocytes. What's more important is its successful application in mouse tissue-engineered experiments.
Collapse
|
6
|
Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 2022; 29:479-497. [PMID: 33633356 DOI: 10.1038/s41434-021-00240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss (HL), which accounts for approximately 2-5% of all patients with congenital hearing loss. WS is classified into four subtypes depending on the clinical phenotypes. Currently, pathogenic mutations of PAX3, MITF, SOX10, EDN3, EDNRB or SNAI2 are associated with different subtypes of WS. Although supportive techniques like hearing aids, cochlear implants, or other assistive listening devices can alleviate the HL symptom, there is no cure for WS to date. Recently major progress has been achieved in preclinical studies of genetic HL in animal models, including gene delivery and stem cell replacement therapies. This review focuses on the current understandings of pathogenic mechanisms and potential biological therapeutic approaches for HL in WS, providing strategies and directions for implementing WS biological therapies, as well as possible problems to be faced, in the future.
Collapse
|
7
|
Preferential stimulation of melanocytes by M2 macrophages to produce melanin through vascular endothelial growth factor. Sci Rep 2022; 12:6416. [PMID: 35440608 PMCID: PMC9019043 DOI: 10.1038/s41598-022-08163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory hyperpigmentation is a skin discoloration process that occurs following an inflammatory response or wound. As the skin begins to heal, macrophages first exhibit a proinflammatory phenotype (M1) during the early stages of tissue repair and then transition to a pro-healing, anti-inflammatory phenotype (M2) in later stages. During this process, M1 macrophages remove invading bacteria and M2 macrophages remodel surrounding tissue; however, the relationship between macrophages and pigmentation is unclear. In this study, we examined the effect of macrophages on melanin pigmentation using human induced pluripotent stem cells. Functional melanocytes were differentiated from human induced pluripotent stem cells and named as hiMels. The generated hiMels were then individually cocultured with M1 and M2 macrophages. Melanin synthesis decreased in hiMels cocultured with M1 macrophages but significantly increased in hiMels cocultured with M2 macrophages. Moreover, the expression of vascular endothelial growth factor was increased in M2 cocultured media. Our findings suggest that M2 macrophages, and not M1 macrophages, induce hyperpigmentation in scarred areas of the skin during tissue repair.
Collapse
|
8
|
Kawakami T. Surgical procedures and innovative approaches for vitiligo regenerative treatment and melanocytorrhagy. J Dermatol 2022; 49:391-401. [PMID: 35178747 DOI: 10.1111/1346-8138.16316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
Abstract
Surgical treatments for vitiligo are a safe and effective treatment modality for select patients with vitiligo. Many techniques of vitiligo surgery exist, each with unique advantages and disadvantages. We reviewed the various surgical therapies and innovative approaches for vitiligo regenerative treatment reported in the literature. Surgical therapies can be subdivided into tissue grafting methods and cellular grafting methods. Tissue grafting methods mainly include mini punch grafts, suction blister roof grafts, and hair follicle grafts. Cellular grafting methods include cultured and non-cultured treatments. The efficacy needs to be improved largely due to the poor proliferation and quality of the autologous melanocytes. Rho-associated protein kinase inhibitor enhances primary melanocyte culture proliferation from vitiligo patients to prevent apoptosis. Innovative approaches using stem cell methods could prove invaluable in developing a novel cell therapy for patients suffering from vitiligo. We succeeded in inducing melanin pigmentation in mice skin in vivo using our human induced pluripotent stem cell-derived melanocytes. In addition, we reviewed melanocytorrhagy, detachment and transepidermal loss of melanocytes, and melanocyte-related adhesion molecules. These adhesion molecules include epithelial cadherin, discoidin domain receptor tyrosine kinase 1, glycoprotein non-metastatic melanoma protein B, macrophage migration inhibiting factor, 17β-hydroxysteroid dehydrogenase 1, and E26 transformation-specific 1.
Collapse
Affiliation(s)
- Tamihiro Kawakami
- Division of Dermatology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
9
|
Ishida T, Koyanagi-Aoi M, Yamamiya D, Onishi A, Sato K, Uehara K, Fujisawa M, Aoi T. Differentiation of Human Induced Pluripotent Stem Cells Into Testosterone-Producing Leydig-like Cells. Endocrinology 2021; 162:6373541. [PMID: 34549267 DOI: 10.1210/endocr/bqab202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Indexed: 12/26/2022]
Abstract
Late-onset hypogonadism (LOH) syndrome, due to a partial lack of testosterone, decreases the quality of life of older men. Testosterone is mainly secreted by Leydig cells in the testes. Leydig cell transplantation is expected to be a promising alternative to conventional testosterone replacement therapy for LOH syndrome. We herein report a simple and robust protocol for directed differentiation of human induced pluripotent stem cells (hiPSCs) into Leydig-like cells by doxycycline-inducible overexpression of NR5A1 and treatment with a combination of 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP) and forskolin. The differentiated cells expressed the steroidogenic enzyme genes STAR, CYP11A1, CYP17A1, and HSD3B2 and the specific markers of adult Leydig cells HSD17B3, INSL3, and LHCGR. Furthermore, we confirmed the secretion of functional testosterone from the cells into the culture supernatant by a testosterone-sensitive cell proliferation assay. These findings showed that the hiPSCs were able to be differentiated into Leydig-like cells, supporting the expectation that hiPSC-derived Leydig-like cells can be novel tools for treating LOH syndrome.
Collapse
Affiliation(s)
- Takaki Ishida
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe 650-0017, Japan
| | - Daisuke Yamamiya
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa 920-8641, Japan
| | - Atsushi Onishi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Katsuya Sato
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Keiichiro Uehara
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Department of Diagnostic Pathology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe 650-0017, Japan
| |
Collapse
|
10
|
Varrone F, Mandrich L, Caputo E. Melanoma Immunotherapy and Precision Medicine in the Era of Tumor Micro-Tissue Engineering: Where Are We Now and Where Are We Going? Cancers (Basel) 2021; 13:5788. [PMID: 34830940 PMCID: PMC8616100 DOI: 10.3390/cancers13225788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma still remains a cancer with very poor survival rates, although it is at the forefront of personalized medicine. Most patients show partial responses and disease progressed due to adaptative resistance mechanisms, preventing long-lasting clinical benefits to the current treatments. The response to therapies can be shaped by not only taking into account cancer cell heterogeneity and plasticity, but also by its structural context as well as the cellular component of the tumor microenvironment (TME). Here, we review the recent development in the field of immunotherapy and target-based therapy and how, in the era of tumor micro-tissue engineering, ex-vivo assays could help to enhance our melanoma biology knowledge in its complexity, translating it in the development of successful therapeutic strategies, as well as in the prediction of therapeutic benefits.
Collapse
Affiliation(s)
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystem—IRET-CNR Via Pietro Castellino 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics—IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, I-80131 Naples, Italy
| |
Collapse
|
11
|
The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021; 10:cells10020240. [PMID: 33513719 PMCID: PMC7912181 DOI: 10.3390/cells10020240] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid progress in the field of stem cell research has laid strong foundations for their use in regenerative medicine applications of injured or diseased tissues. Growing evidences indicate that some observed therapeutic outcomes of stem cell-based therapy are due to paracrine effects rather than long-term engraftment and survival of transplanted cells. Given their ability to cross biological barriers and mediate intercellular information transfer of bioactive molecules, extracellular vesicles are being explored as potential cell-free therapeutic agents. In this review, we first discuss the state of the art of regenerative medicine and its current limitations and challenges, with particular attention on pluripotent stem cell-derived products to repair organs like the eye, heart, skeletal muscle and skin. We then focus on emerging beneficial roles of extracellular vesicles to alleviate these pathological conditions and address hurdles and operational issues of this acellular strategy. Finally, we discuss future directions and examine how careful integration of different approaches presented in this review could help to potentiate therapeutic results in preclinical models and their good manufacturing practice (GMP) implementation for future clinical trials.
Collapse
|
12
|
Sah SK, Kanaujiya JK, Chen IP, Reichenberger EJ. Generation of Keratinocytes from Human Induced Pluripotent Stem Cells Under Defined Culture Conditions. Cell Reprogram 2020; 23:1-13. [PMID: 33373529 DOI: 10.1089/cell.2020.0046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differentiation of keratinocytes from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) has become an important tool for wound healing research and for studying skin diseases in instances where patient cells are not available. Several keratinocyte differentiation protocols using hiPSC colony fragments or embryoid bodies have been published with some requiring prolonged time for differentiation or extended use of reagent cocktails. In this study, we present a simplified method to efficiently generate large numbers of uniformly differentiated keratinocytes in less than 4 weeks from singularized hiPSCs with differentiation factors, retinoic acid and bone morphogenetic protein 4 (BMP4). Low seeding density of singularized iPSCs results in keratinocyte cultures with minimum cell death during differentiation and up to 96% homogeneity for keratin 14-positive cells and low percentage of keratinocyte maturation markers, comparable to early passage primary keratinocytes. hiPSC-derived keratinocytes remain in a proliferative state, can be maintained for prolonged periods of time, and can be terminally differentiated under high calcium conditions in the same way as primary human keratinocytes. Moreover, coculturing hiPSC-derived fibroblasts and keratinocytes consistently formed organotypic 3D skin equivalents. Therefore, keratinocytes generated by this method are a viable source of cells for downstream applications.
Collapse
Affiliation(s)
- Shyam Kishor Sah
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Jitendra K Kanaujiya
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
13
|
Kobayashi GS, Musso CM, Moreira DDP, Pontillo-Guimarães G, Hsia GSP, Caires-Júnior LC, Goulart E, Passos-Bueno MR. Recapitulation of Neural Crest Specification and EMT via Induction from Neural Plate Border-like Cells. Stem Cell Reports 2020; 15:776-788. [PMID: 32857981 PMCID: PMC7486307 DOI: 10.1016/j.stemcr.2020.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest cells (NCCs) contribute to several tissues during embryonic development. NCC formation depends on activation of tightly regulated molecular programs at the neural plate border (NPB) region, which initiate NCC specification and epithelial-to-mesenchymal transition (EMT). Although several approaches to investigate NCCs have been devised, these early events of NCC formation remain largely unknown in humans, and currently available cellular models have not investigated EMT. Here, we report that the E6 neural induction protocol converts human induced pluripotent stem cells into NPB-like cells (NBCs), from which NCCs can be efficiently derived. NBC-to-NCC induction recapitulates gene expression dynamics associated with NCC specification and EMT, including downregulation of NPB factors and upregulation of NCC specifiers, coupled with other EMT-associated cell-state changes, such as cadherin modulation and activation of TWIST1 and other EMT inducers. This strategy will be useful in future basic or translational research focusing on these early steps of NCC formation.
Collapse
Affiliation(s)
- Gerson Shigeru Kobayashi
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Camila Manso Musso
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Danielle de Paula Moreira
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanna Pontillo-Guimarães
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriella Shih Ping Hsia
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Carlos Caires-Júnior
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Liu LP, Guo NN, Li YM, Zheng YW. Generation of Human iMelanocytes from Induced Pluripotent Stem Cells through a Suspension Culture System. STAR Protoc 2020; 1:100004. [PMID: 33111066 PMCID: PMC7580196 DOI: 10.1016/j.xpro.2019.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Melanocytes, derived from neural crest cells, are involved in melanin production. This protocol describes a method to generate induced melanocytes (iMelanocytes) from human induced pluripotent stem cells (iPSCs) using a suspension culture system, which considerably improves the differentiation efficiency. The most critical parts of this protocol are the selection of a reliable iPSC line with strong potential to differentiate into melanocytes and their stemness maintenance. For complete information on the use and generation of this protocol, please refer to our Cell Reports article, Liu el al. (2019). Selection of reliable iPSC lines and their stemness maintenance is critical EB-based suspensive system enhances efficiency of iMelanocytes generation EBs characterized by smooth borders and dark centers without cavities are preferred Quality control is performed through morphology checks and melanocyte markers
Collapse
Affiliation(s)
- Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China.,Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China.,University of Tsukuba Faculty of Medicine, Ibaraki 305-8575, Japan
| | - Ning-Ning Guo
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China.,Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China.,Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China.,University of Tsukuba Faculty of Medicine, Ibaraki 305-8575, Japan.,Yokohama City University School of Medicine, Yokohama 236-0004, Japan.,Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
15
|
Rebecca VW, Somasundaram R, Herlyn M. Pre-clinical modeling of cutaneous melanoma. Nat Commun 2020; 11:2858. [PMID: 32504051 PMCID: PMC7275051 DOI: 10.1038/s41467-020-15546-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Metastatic melanoma is challenging to manage. Although targeted- and immune therapies have extended survival, most patients experience therapy resistance. The adaptability of melanoma cells in nutrient- and therapeutically-challenged environments distinguishes melanoma as an ideal model for investigating therapy resistance. In this review, we discuss the current available repertoire of melanoma models including two- and three-dimensional tissue cultures, organoids, genetically engineered mice and patient-derived xenograft. In particular, we highlight how each system recapitulates different features of melanoma adaptability and can be used to better understand melanoma development, progression and therapy resistance. Despite the new targeted and immunotherapies for metastatic melanoma, several patients show therapeutic plateau. Here, the authors review the current pre-clinical models of cutaneous melanoma and discuss their strengths and limitations that may help with overcoming therapeutic plateau.
Collapse
Affiliation(s)
- Vito W Rebecca
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | | | - Meenhard Herlyn
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA.
| |
Collapse
|