1
|
Parikh R, Parikh S, Berzin D, Vaknine H, Ovadia S, Likonen D, Greenberger S, Scope A, Elgavish S, Nevo Y, Plaschkes I, Nizri E, Kobiler O, Maliah A, Zaremba L, Mohan V, Sagi I, Ashery-Padan R, Carmi Y, Luxenburg C, Hoheisel JD, Khaled M, Levesque MP, Levy C. Recycled melanoma-secreted melanosomes regulate tumor-associated macrophage diversification. EMBO J 2024; 43:3553-3586. [PMID: 38719996 PMCID: PMC11377571 DOI: 10.1038/s44318-024-00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 09/07/2024] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.
Collapse
Affiliation(s)
- Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- The Ragon Institute of Mass General, Massachusetts Institute of Technology (MIT), and Harvard, MA 02139, Cambridge, USA
| | - Daniella Berzin
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon, 58100, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daniela Likonen
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | | | - Alon Scope
- The Kittner Skin Cancer Screening and Research Institute, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv Universitygrid.12136.37, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Laureen Zaremba
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Chen Luxenburg
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mehdi Khaled
- INSERM 1279, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Wagistrasse 18, CH-8952, Schlieren, Switzerland
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
2
|
Rodrigues DB, Moreira HR, Jarnalo M, Horta R, Marques AP, Reis RL, Pirraco RP. Generation of 3D melanoma models using an assembloid-based approach. Acta Biomater 2024; 178:93-110. [PMID: 38382833 DOI: 10.1016/j.actbio.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
While 3D tumor models have greatly evolved over the past years, there is still a strong requirement for more biosimilar models which are capable of recapitulating cellular crosstalk within the tumor microenvironment while equally displaying representative levels of tumor aggressiveness and invasion. Herein, we disclose an assembloid melanoma model based on the fusion of individual stromal multicellular spheroids (MCSs). In contrast to more traditional tumor models, we show that it is possible to develop self-organizing, heterotypic melanoma models where tumor cells present stem-cell like features like up-regulated pluripotency master regulators SOX2, POU5F1 and NANOG. Additionally, these assembloids display high levels of invasiveness while embedded in 3D matrices as evidenced by stromal cell promotion of melanoma cell invasion via metalloproteinase production. Furthermore, sensitivity to anticancer drug doxorubicin was demonstrated for the melanoma assembloid model. These findings suggest that melanoma assembloids may play a significant role in the field of 3D cancer models as they more closely mimic the tumor microenvironment when compared to more traditional MCSs, opening the doors to a better understanding of the role of tumor microenvironment in supporting tumor progression. STATEMENT OF SIGNIFICANCE: The development of complex 3D tumor models that better recapitulate the tumor microenvironment is crucial for both an improved comprehension of intercellular crosstalk and for more efficient drug screening. We have herein developed a self-organizing heterotypic assembloid-based melanoma model capable of closely mimicking the tumor microenvironment. Key features recapitulated were the preservation of cancer cell stemness, sensitivity to anti-cancer agents and tumor cell invasion promoted by stromal cells. The approach of pre-establishing distinct stromal domains for subsequent combination into more complex tumor constructs provides a route for developing superior tumor models with a higher degree of similarity to native cancer tissues.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Helena R Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal.
| |
Collapse
|
3
|
Jain P, Pillai M, Duddu AS, Somarelli JA, Goyal Y, Jolly MK. Dynamical hallmarks of cancer: Phenotypic switching in melanoma and epithelial-mesenchymal plasticity. Semin Cancer Biol 2023; 96:48-63. [PMID: 37788736 DOI: 10.1016/j.semcancer.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Penas C, Arroyo-Berdugo Y, Apraiz A, Rasero J, Muñoa-Hoyos I, Andollo N, Cancho-Galán G, Izu R, Gardeazabal J, Ezkurra PA, Subiran N, Alvarez-Dominguez C, Alonso S, Bosserhoff AK, Asumendi A, Boyano MD. Pirin is a prognostic marker of human melanoma that dampens the proliferation of malignant cells by downregulating JARID1B/KDM5B expression. Sci Rep 2023; 13:9561. [PMID: 37308689 DOI: 10.1038/s41598-023-36684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Originally considered to act as a transcriptional co-factor, Pirin has recently been reported to play a role in tumorigenesis and the malignant progression of many tumors. Here, we have analyzed the diagnostic and prognostic value of Pirin expression in the early stages of melanoma, and its role in the biology of melanocytic cells. Pirin expression was analyzed in a total of 314 melanoma biopsies, correlating this feature with the patient's clinical course. Moreover, PIR downregulated primary melanocytes were analyzed by RNA sequencing, and the data obtained were validated in human melanoma cell lines overexpressing PIR by functional assays. The immunohistochemistry multivariate analysis revealed that early melanomas with stronger Pirin expression were more than twice as likely to develop metastases during the follow-up. Transcriptome analysis of PIR downregulated melanocytes showed a dampening of genes involved in the G1/S transition, cell proliferation, and cell migration. In addition, an in silico approach predicted that JARID1B as a potential transcriptional regulator that lies between PIR and its downstream modulated genes, which was corroborated by co-transfection experiments and functional analysis. Together, the data obtained indicated that Pirin could be a useful marker for the metastatic progression of melanoma and that it participates in the proliferation of melanoma cells by regulating the slow-cycling JARID1B gene.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA, 15213, USA
| | - Iraia Muñoa-Hoyos
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | | | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Basurto University Hospital, 48013, Bilbo, Spain
| | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Pilar A Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Carmen Alvarez-Dominguez
- MEDONLINE Multidisciplinary Research Group, Faculty of Health Sciences and Faculty of Education, International University of La Rioja, 26006, Logroño, Spain
| | - Santos Alonso
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940, Leioa, Spain
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054, Erlangen, Germany
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain.
| |
Collapse
|
5
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
6
|
Shoji KF, Bayet E, Leverrier-Penna S, Le Devedec D, Mallavialle A, Marionneau-Lambot S, Rambow F, Perret R, Joussaume A, Viel R, Fautrel A, Khammari A, Constantin B, Tartare-Deckert S, Penna A. The mechanosensitive TRPV2 calcium channel promotes human melanoma invasiveness and metastatic potential. EMBO Rep 2023; 24:e55069. [PMID: 36744297 PMCID: PMC10074106 DOI: 10.15252/embr.202255069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing, which is fundamentally driven by aberrant cell motility behaviors. Discovering "migrastatics" targets, specifically controlling invasion and dissemination of melanoma cells during metastasis, is therefore of primary importance. Here, we uncover the prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic dissemination. In vitro as well as in vivo, TRPV2 activity is sufficient to confer both migratory and invasive potentials, while conversely TRPV2 silencing in highly metastatic melanoma cells prevents aggressive behavior. In invasive melanoma cells, TRPV2 channel localizes at the leading edge, in dynamic nascent adhesions, and regulates calcium-mediated activation of calpain and the ensuing cleavage of the adhesive protein talin, along with F-actin organization. In human melanoma tissues, TRPV2 overexpression correlates with advanced malignancy and poor prognosis, evoking a biomarker potential. Hence, by regulating adhesion and motility, the mechanosensitive TRPV2 channel controls melanoma cell invasiveness, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Kenji F Shoji
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Elsa Bayet
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France.,CNRS, 4CS, Université de Poitiers, Poitiers, France
| | | | - Dahiana Le Devedec
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Aude Mallavialle
- INSERM, C3M, team 'labellisée Ligue Contre le Cancer 2022, Université Côte d'Azur, Nice, France
| | | | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany.,University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Raul Perret
- Service de Dermatologie, CHU Nantes, CIC 1413, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
| | - Aurélie Joussaume
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes 1, Rennes, France
| | - Alain Fautrel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes 1, Rennes, France
| | - Amir Khammari
- Service de Dermatologie, CHU Nantes, CIC 1413, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
| | | | - Sophie Tartare-Deckert
- INSERM, C3M, team 'labellisée Ligue Contre le Cancer 2022, Université Côte d'Azur, Nice, France
| | - Aubin Penna
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France.,CNRS, 4CS, Université de Poitiers, Poitiers, France
| |
Collapse
|
7
|
Lasheras-Otero I, Feliu I, Maillo A, Moreno H, Redondo-Muñoz M, Aldaz P, Bocanegra A, Olias-Arjona A, Lecanda F, Fernandez-Irigoyen J, Santamaria E, Larrayoz IM, Gomez-Cabrero D, Wellbrock C, Vicent S, Arozarena I. The Regulators of Peroxisomal Acyl-Carnitine Shuttle CROT and CRAT Promote Metastasis in Melanoma. J Invest Dermatol 2023; 143:305-316.e5. [PMID: 36058299 DOI: 10.1016/j.jid.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023]
Abstract
Circulating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA beta-oxidation‒related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival. Among the highest expressed regulators in melanoma circulating tumor cells were the carnitine transferases carnitine O-octanoyltransferase and carnitine acetyltransferase, which control the shuttle of peroxisome-derived medium-chain FAs toward mitochondria to fuel mitochondrial FA beta-oxidation. Knockdown of carnitine O-octanoyltransferase or carnitine acetyltransferase and short-term treatment with peroxisomal or mitochondrial FA beta-oxidation inhibitors thioridazine or ranolazine suppressed melanoma metastasis in mice. Carnitine O-octanoyltransferase and carnitine acetyltransferase depletion could be rescued by medium-chain FA supplementation, indicating that the peroxisomal supply of FAs is crucial for the survival of nonadherent melanoma cells. Our study identifies targeting the FA-based cross-talk between peroxisomes and mitochondria as a potential therapeutic opportunity to challenge melanoma progression. Moreover, the discovery of the antimetastatic activity of the Food and Drug Administration‒approved drug ranolazine carries translational potential.
Collapse
Affiliation(s)
- Irene Lasheras-Otero
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Iker Feliu
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Program in Solid Tumors, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Alberto Maillo
- Translational Bioinformatics Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain
| | - Haritz Moreno
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Program in Solid Tumors, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Marta Redondo-Muñoz
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Paula Aldaz
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain
| | - Ana Olias-Arjona
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fernando Lecanda
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Program in Solid Tumors, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Center for Biomedical Research Network on Cancer (CIBERONC), Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Joaquin Fernandez-Irigoyen
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Proteomics Platform, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain
| | - Enrique Santamaria
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Clinical Neuroproteomics Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Foundation Rioja Salud, Logroño, Spain; Pre-departmental Nursing Unit, University of La Rioja (UR), Logroño, La Rioja, Spain
| | - David Gomez-Cabrero
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Translational Bioinformatics Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Claudia Wellbrock
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain
| | - Silvestre Vicent
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Program in Solid Tumors, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Center for Biomedical Research Network on Cancer (CIBERONC), Madrid, Spain
| | - Imanol Arozarena
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
8
|
Ng MF, Simmons JL, Boyle GM. Heterogeneity in Melanoma. Cancers (Basel) 2022; 14:3030. [PMID: 35740696 PMCID: PMC9221188 DOI: 10.3390/cancers14123030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
There is growing evidence that tumour heterogeneity has an imperative role in cancer development, evolution and resistance to therapy. Continuing advancements in biomedical research enable tumour heterogeneity to be observed and studied more critically. As one of the most heterogeneous human cancers, melanoma displays a high level of biological complexity during disease progression. However, much is still unknown regarding melanoma tumour heterogeneity, as well as the role it plays in disease progression and treatment response. This review aims to provide a concise summary of the importance of tumour heterogeneity in melanoma.
Collapse
Affiliation(s)
- Mei Fong Ng
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.F.N.); (J.L.S.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.F.N.); (J.L.S.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.F.N.); (J.L.S.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
10
|
Campbell NR, Rao A, Hunter MV, Sznurkowska MK, Briker L, Zhang M, Baron M, Heilmann S, Deforet M, Kenny C, Ferretti LP, Huang TH, Perlee S, Garg M, Nsengimana J, Saini M, Montal E, Tagore M, Newton-Bishop J, Middleton MR, Corrie P, Adams DJ, Rabbie R, Aceto N, Levesque MP, Cornell RA, Yanai I, Xavier JB, White RM. Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Dev Cell 2021; 56:2808-2825.e10. [PMID: 34529939 DOI: 10.1016/j.devcel.2021.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/07/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023]
Abstract
Melanomas can have multiple coexisting cell states, including proliferative (PRO) versus invasive (INV) subpopulations that represent a "go or grow" trade-off; however, how these populations interact is poorly understood. Using a combination of zebrafish modeling and analysis of patient samples, we show that INV and PRO cells form spatially structured heterotypic clusters and cooperate in the seeding of metastasis, maintaining cell state heterogeneity. INV cells adhere tightly to each other and form clusters with a rim of PRO cells. Intravital imaging demonstrated cooperation in which INV cells facilitate dissemination of less metastatic PRO cells. We identified the TFAP2 neural crest transcription factor as a master regulator of clustering and PRO/INV states. Isolation of clusters from patients with metastatic melanoma revealed a subset with heterotypic PRO-INV clusters. Our data suggest a framework for the co-existence of these two divergent cell populations, in which heterotypic clusters promote metastasis via cell-cell cooperation.
Collapse
Affiliation(s)
- Nathaniel R Campbell
- Weill Cornell/Rockefeller Memorial Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anjali Rao
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Miranda V Hunter
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Magdalena K Sznurkowska
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Luzia Briker
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland
| | - Maomao Zhang
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maayan Baron
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Silja Heilmann
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maxime Deforet
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colin Kenny
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lorenza P Ferretti
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland; Department of Molecular Mechanisms of Disease, University of Zürich, Zurich, Switzerland
| | - Ting-Hsiang Huang
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Perlee
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Jérémie Nsengimana
- Leeds Institute of Medical Research at St. James's, University of Leeds School of Medicine, Leeds, UK
| | - Massimo Saini
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Emily Montal
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohita Tagore
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julia Newton-Bishop
- Leeds Institute of Medical Research at St. James's, University of Leeds School of Medicine, Leeds, UK
| | - Mark R Middleton
- Oxford NIHR Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Pippa Corrie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David J Adams
- Experimental Cancer Genetics, the Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Roy Rabbie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Experimental Cancer Genetics, the Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Joao B Xavier
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Richard M White
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
11
|
Pillai M, Jolly MK. Systems-level network modeling deciphers the master regulators of phenotypic plasticity and heterogeneity in melanoma. iScience 2021; 24:103111. [PMID: 34622164 PMCID: PMC8479788 DOI: 10.1016/j.isci.2021.103111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Phenotypic (i.e. non-genetic) heterogeneity in melanoma drives dedifferentiation, recalcitrance to targeted therapy and immunotherapy, and consequent tumor relapse and metastasis. Various markers or regulators associated with distinct phenotypes in melanoma have been identified, but, how does a network of interactions among these regulators give rise to multiple "attractor" states and phenotypic switching remains elusive. Here, we inferred a network of transcription factors (TFs) that act as master regulators for gene signatures of diverse cell-states in melanoma. Dynamical simulations of this network predicted how this network can settle into different "attractors" (TF expression patterns), suggesting that TF network dynamics drives the emergence of phenotypic heterogeneity. These simulations can recapitulate major phenotypes observed in melanoma and explain de-differentiation trajectory observed upon BRAF inhibition. Our systems-level modeling framework offers a platform to understand trajectories of phenotypic transitions in the landscape of a regulatory TF network and identify novel therapeutic strategies targeting melanoma plasticity.
Collapse
Affiliation(s)
- Maalavika Pillai
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Undergraduate Programme, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Vandyck HHLD, Hillen LM, Bosisio FM, van den Oord J, zur Hausen A, Winnepenninckx V. Rethinking the biology of metastatic melanoma: a holistic approach. Cancer Metastasis Rev 2021; 40:603-624. [PMID: 33870460 PMCID: PMC8213587 DOI: 10.1007/s10555-021-09960-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Over the past decades, melanoma-related mortality has remained nearly stable. The main reason is treatment failure of metastatic disease and the inherently linked knowledge gap regarding metastasis formation. In order to elicit invasion, melanoma cells manipulate the tumor microenvironment, gain motility, and adhere to the extracellular matrix and cancer-associated fibroblasts. Melanoma cells thereby express different cell adhesion molecules like laminins, integrins, N-cadherin, and others. Epithelial-mesenchymal transition (EMT) is physiological during embryologic development, but reactivated during malignancy. Despite not being truly epithelial, neural crest-derived malignancies like melanoma share similar biological programs that enable tumorigenesis, invasion, and metastasis. This complex phenomenon is termed phenotype switching and is intertwined with oncometabolism as well as dormancy escape. Additionally, it has been shown that primary melanoma shed exosomes that create a favorable premetastatic niche in the microenvironment of secondary organs and lymph nodes. Although the growing body of literature describes the aforementioned concepts separately, an integrative holistic approach is missing. Using melanoma as a tumor model, this review will shed light on these complex biological principles in an attempt to clarify the mechanistic metastatic pathways that dictate tumor and patient fate.
Collapse
Affiliation(s)
- Hendrik HLD Vandyck
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Lisa M Hillen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Francesca M Bosisio
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
13
|
Granados K, Poelchen J, Novak D, Utikal J. Cellular Reprogramming-A Model for Melanoma Cellular Plasticity. Int J Mol Sci 2020; 21:E8274. [PMID: 33167306 PMCID: PMC7663830 DOI: 10.3390/ijms21218274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular plasticity of cancer cells is often associated with phenotypic heterogeneity and drug resistance and thus remains a major challenge for the treatment of melanoma and other types of cancer. Melanoma cells have the capacity to switch their phenotype during tumor progression, from a proliferative and differentiated phenotype to a more invasive and dedifferentiated phenotype. However, the molecular mechanisms driving this phenotype switch are not yet fully understood. Considering that cellular heterogeneity within the tumor contributes to the high plasticity typically observed in melanoma, it is crucial to generate suitable models to investigate this phenomenon in detail. Here, we discuss the use of complete and partial reprogramming into induced pluripotent cancer (iPC) cells as a tool to obtain new insights into melanoma cellular plasticity. We consider this a relevant topic due to the high plasticity of melanoma cells and its association with a strong resistance to standard anticancer treatments.
Collapse
Affiliation(s)
- Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| |
Collapse
|
14
|
Rowling EJ, Miskolczi Z, Nagaraju R, Wilcock DJ, Wang P, Telfer B, Li Y, Lasheras-Otero I, Redondo-Muñoz M, Sharrocks AD, Arozarena I, Wellbrock C. Cooperative behaviour and phenotype plasticity evolve during melanoma progression. Pigment Cell Melanoma Res 2020; 33:695-708. [PMID: 32145051 PMCID: PMC7496243 DOI: 10.1111/pcmr.12873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023]
Abstract
A major challenge for managing melanoma is its tumour heterogeneity based on individual co-existing melanoma cell phenotypes. These phenotypes display variable responses to standard therapies, and they drive individual steps of melanoma progression; hence, understanding their behaviour is imperative. Melanoma phenotypes are defined by distinct transcriptional states, which relate to different melanocyte lineage development phases, ranging from a mesenchymal, neural crest-like to a proliferative, melanocytic phenotype. It is thought that adaptive phenotype plasticity based on transcriptional reprogramming drives melanoma progression, but at which stage individual phenotypes dominate and moreover, how they interact is poorly understood. We monitored melanocytic and mesenchymal phenotypes throughout melanoma progression and detected transcriptional reprogramming at different stages, with a gain in mesenchymal traits in circulating melanoma cells (CTCs) and proliferative features in metastatic tumours. Intriguingly, we found that distinct phenotype populations interact in a cooperative manner, which generates tumours of greater "fitness," supports CTCs and expands organotropic cues in metastases. Fibronectin, expressed in mesenchymal cells, acts as key player in cooperativity and promotes survival of melanocytic cells. Our data reveal an important role for inter-phenotype communications at various stages of disease progression, suggesting these communications could act as therapeutic target.
Collapse
Affiliation(s)
- Emily J Rowling
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Raghavendar Nagaraju
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel J Wilcock
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ping Wang
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian Telfer
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yaoyong Li
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Irene Lasheras-Otero
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Marta Redondo-Muñoz
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Andrew D Sharrocks
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Imanol Arozarena
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|