1
|
Goodman RS, Jung S, Fletcher K, Burnette H, Mohyuddin I, Irlmeier R, Ye F, Johnson DB. Primary Tumor Characteristics as Biomarkers of Immunotherapy Response in Advanced Melanoma: A Retrospective Cohort Study. Cancers (Basel) 2024; 16:2355. [PMID: 39001417 PMCID: PMC11240575 DOI: 10.3390/cancers16132355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Identifying patients likely to benefit from immune checkpoint inhibitor (ICI) treatment remains a crucial goal for melanoma. The objective of this study is to assess the association between primary tumor features and immunotherapy response and survival in advanced melanoma patients. In this single-center retrospective cohort study, disease characteristics, response to immunotherapy, PFS, and OS were assessed among melanoma patients (excluding mucosal and uveal primaries) treated with ICI. Among 447 patients, 300 (67.1%) received anti-PD-1 monotherapy and 147 (32.9%) received ipilimumab/nivolumab. A total of 338 (75.6%) had cutaneous melanoma, 29 (6.5%) had acral melanoma, and 80 (17.9%) had melanoma of unknown primary. Ulceration and stage at initial presentation were associated with inferior outcomes on univariate analysis. However, on multivariate analysis, this result was not observed, but cutaneous melanoma and each of its subtypes (superficial spreading, nodular, other, unknown) were positively associated with response, longer PFS, and longer OS. Metastatic stage (M1c, M1d) at presentation (OR = 1.8, p < 0.05) and BRAFV600E mutation status (OR = 1.6, p < 0.001) were associated with shorter PFS. This study is limited by its retrospective and single-center design. Cutaneous melanoma and its subtypes were significantly associated with response, PFS, and OS compared with acral or unknown primary melanoma.
Collapse
Affiliation(s)
- Rachel S Goodman
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Seungyeon Jung
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kylie Fletcher
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Hannah Burnette
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | | | - Rebecca Irlmeier
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Fei Ye
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Pan CX, Liu M, Lau CB, Lau WC, Kim DY, Saberi SA, Rowley R, Kanwar R, Giobbie-Hurder A, LeBoeuf NR, Nambudiri VE. Histopathological predictors of immune-related adverse events among patients with melanoma treated with immune checkpoint inhibitors. J Am Acad Dermatol 2024; 90:826-829. [PMID: 38040339 DOI: 10.1016/j.jaad.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Catherina X Pan
- Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mofei Liu
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Charles B Lau
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Boston University, Boston, Massachusetts
| | - William C Lau
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Boston University School of Medicine, Boston, Massachusetts
| | - Daniel Y Kim
- Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Shahin A Saberi
- Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rachael Rowley
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ruhi Kanwar
- Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nicole R LeBoeuf
- Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Dana-Farber Cancer Institute, Center for Cutaneous Oncology, Boston, Massachusetts
| | - Vinod E Nambudiri
- Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Dana-Farber Cancer Institute, Center for Cutaneous Oncology, Boston, Massachusetts.
| |
Collapse
|
3
|
Mo Z, Liu J, Zhang J, Deng Y, Xu M, Jiang Y. Association of NRAS mutations and tertiary lymphoid structure formation with clinical outcomes of adjuvant PD-1 inhibitors for acral melanoma. Int Immunopharmacol 2023; 124:110973. [PMID: 37769536 DOI: 10.1016/j.intimp.2023.110973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES This study evaluates the efficacy of programmed death-1 (PD-1) inhibitors as adjuvant therapy for acral melanoma (AM) and the predictive value of genetic mutations and tertiary lymphoid structures (TLSs). METHODS AND RESULTS A single-center retrospective longitudinal cohort study was conducted between October 1, 2018, and September 31, 2022. Patients with stages II-III completely resected AM were treated with at least two doses of adjuvant PD-1 inhibitors. A total of 44 participants were included in the final analysis, of which 41 patients with stage III. The median follow-up time, median relapse-free survival (RFS), and median distance metastasis-free survival (DMFS) for all patients were 18.4 months, 21.6 months, and 30.6 months, respectively. 21 (47.7%) and 20 (45.5%) patients were intravenously administered pembrolizumab and toripalimab, respectively. There were no significant differences in RFS (24.4 months vs. 18.9 months, p = 0.432) or DMFS (30.6 months vs. not reached, p = 0.865) between the pembrolizumab and toripalimab groups, respectively. The median DMFS (41.1 months vs. 9.0 months, p < 0.001) in the wild-type NRAS group was significantly longer than that in the NRAS mutation group. Overall, different levels of TLSs infiltration did not significantly affect patient survival. Only three people discontinued treatment due to adverse events. No treatment-related death occurred during the study period. CONCLUSION Our study suggests that adjuvant toripalimab and pembrolizumab therapy have comparable efficacies in patients with AM and are both well tolerated. Adjuvant monotherapy with PD-1 inhibitors may not be appropriate for AM with NRAS mutations.
Collapse
Affiliation(s)
- Zeming Mo
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Liu
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaotiao Deng
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Jiang
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Jaeger ZJ, Raval NS, Maverakis NKA, Chen DY, Ansstas G, Hardi A, Cornelius LA. Objective response to immune checkpoint inhibitor therapy in NRAS-mutant melanoma: A systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1090737. [PMID: 36873887 PMCID: PMC9979544 DOI: 10.3389/fmed.2023.1090737] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction NRAS mutations are common in melanoma and confer a worse prognosis. Although most patients with metastatic melanoma receive immune checkpoint inhibitors (ICIs), the impact of NRAS mutational status on their efficacy remains under debate. Methods We performed a comprehensive literature search across several large databases. Inclusion criteria were trials, cohorts, and large case series that analyzed the primary outcome of objective response rate by NRAS mutational status in patients with melanoma treated with any line of ICI. At least two reviewers independently screened studies using Covidence software, extracted data, and assessed risk of bias. Standard meta-analysis was performed in R with sensitivity analysis and tests for bias. Results Data on 1770 patients from ten articles were pooled for meta-analysis, and the objective response rate to ICIs was calculated to compare NRAS-mutant and NRAS-wildtype melanoma. The objective response rate was 1.28 (95% confidence interval: 1.01-1.64). Sensitivity analysis identified the study by Dupuis et al. with influential impact on the pooled effect size and heterogeneity, favoring NRAS-mutant melanoma. Discussion In this meta-analysis evaluating the impact of NRAS mutational status on objective response to ICIs in metastatic melanoma, NRAS-mutant cutaneous melanoma demonstrated an increased likelihood of partial or complete tumor response, relative to NRAS-wildtype cutaneous melanoma. Genomic screening for NRAS mutations in patients with metastatic melanoma may improve predictive ability when initiating ICIs.
Collapse
Affiliation(s)
- Zachary J Jaeger
- Office of Medical Student Education, Washington University School of Medicine, St. Louis, MO, United States
| | - Neel S Raval
- Office of Medical Student Education, Washington University School of Medicine, St. Louis, MO, United States
| | | | - David Y Chen
- Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, United States.,Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - George Ansstas
- Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Angela Hardi
- Office of Medical Student Education, Washington University School of Medicine, St. Louis, MO, United States
| | - Lynn A Cornelius
- Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, United States.,Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Vieco-Martí I, López-Carrasco A, de la Cruz-Merino L, Noguera R, Álvaro Naranjo T. The complexity of cancer immunotherapy illustrated through skin tumors. Int J Biol Markers 2022; 37:113-122. [PMID: 35473449 DOI: 10.1177/03936155221088884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Skin tumours are among the cancer types most sensitive to immunotherapy, due to their unique immunogenic features including skin-associated lymphoid tissue, high mutational load, overexpression of tumour antigens, and high frequency of viral antigens. Despite this high immunotherapy response rate, however, ultimately most skin tumours develop similar treatment resistance to most other malignant tumours, which highlights the need for in-depth study of mechanisms of response and resistance to immunotherapy. METHODS A bibliographic review of the most recent publications regarding currently in use and emerging biomarkers on skin tumors has been done. RESULTS Predictive biomarkers of treatment response, biomarkers that warn of possible resistance, and emerging markers, the majority of a systemic nature, are described. Including factors affecting not only genomics, but also the immune system, nervous system, microbiota, tumour microenvironment, metabolism and stress. CONCLUSIONS For accurate diagnosis of tumour type, knowledge of its functional mechanisms and selection of a comprehensive therapeutic protocol, this inclusive view of biology, health and disease is fundamental. This field of study could also become a valuable source of practical information applicable to other areas of oncology and immunotherapy.
Collapse
Affiliation(s)
- I Vieco-Martí
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain.,Centro de investigación biomédica en red de cáncer (CIBERONC), Madrid, Spain
| | - A López-Carrasco
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain.,Centro de investigación biomédica en red de cáncer (CIBERONC), Madrid, Spain
| | - L de la Cruz-Merino
- Departament of Oncology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - R Noguera
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain.,Centro de investigación biomédica en red de cáncer (CIBERONC), Madrid, Spain
| | - T Álvaro Naranjo
- Centro de investigación biomédica en red de cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tortosa, Spain.,Department of Morphological Science, Medical School, Rovira i Virgili University, Reus, Spain
| |
Collapse
|
6
|
Lee J, Han Y, Wang W, Jo H, Kim H, Kim S, Yang KM, Kim SJ, Dhanasekaran DN, Song YS. Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy. Biomolecules 2021; 11:1107. [PMID: 34439774 PMCID: PMC8393583 DOI: 10.3390/biom11081107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction of immune checkpoint molecules in the tumor microenvironment reduces the anti-tumor immune response by suppressing the recognition of T cells to tumor cells. Immune checkpoint inhibitor (ICI) therapy is emerging as a promising therapeutic option for cancer treatment. However, modulating the immune system with ICIs still faces obstacles with severe immunogenic side effects and a lack of response against many cancer types. Plant-derived natural compounds offer regulation on various signaling cascades and have been applied for the treatment of multiple diseases, including cancer. Accumulated evidence provides the possibility of efficacy of phytochemicals in combinational with other therapeutic agents of ICIs, effectively modulating immune checkpoint-related signaling molecules. Recently, several phytochemicals have been reported to show the modulatory effects of immune checkpoints in various cancers in in vivo or in vitro models. This review summarizes druggable immune checkpoints and their regulatory factors. In addition, phytochemicals that are capable of suppressing PD-1/PD-L1 binding, the best-studied target of ICI therapy, were comprehensively summarized and classified according to chemical structure subgroups. It may help extend further research on phytochemicals as candidates of combinational adjuvants. Future clinical trials may validate the synergetic effects of preclinically investigated phytochemicals with ICI therapy.
Collapse
Affiliation(s)
- Juwon Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- SK Biopharmaceuticals Co., Ltd., Seongnam-si 13494, Korea
| | - Wenyu Wang
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea
| | - HyunA Jo
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Heeyeon Kim
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94304, USA;
| | - Kyung-Min Yang
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea; (K.-M.Y.); (S.-J.K.)
| | - Seong-Jin Kim
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea; (K.-M.Y.); (S.-J.K.)
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Korea
| | - Danny N. Dhanasekaran
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|