1
|
Zhai R, Chang L, Jiang J, Wang B, Zhu W. Cellular and Molecular Basis of Environment-Induced Color Change in a Tree Frog. Animals (Basel) 2024; 14:3472. [PMID: 39682437 DOI: 10.3390/ani14233472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background color matching is essential for camouflage and thermoregulation in ectothermic vertebrates, yet several key cellular-level questions remain unresolved. For instance, it is unclear whether the number of chromatophores or the activity of individual chromatophores plays a more critical role in this process. Using single-cell RNA sequencing (scRNA-seq), we investigated the cellular and molecular mechanisms underlying color change in Rhacophorus dugritei, which adapted to its background by displaying light-green skin on white and black skin on black within two days. We identified two types of chromatophores in their skin, both responsible for the observed color differences. Our findings reveal that morphological color change (MCC) is the dominant process, with the number of chromatophores being more influential in driving color change than the transcriptional activity of melanogenesis in individual cells. Additionally, melanophores from darker individuals exhibited increased activity in energy metabolism pathways, while those from lighter individuals showed stronger immune-related gene expression, suggesting that background adaptation involves more than just morphological changes. Overall, this study successfully applied single-cell sequencing technology to investigate skin pigmentation in a non-model organism. Our results suggest that MCC driven by chromatophore proliferation is a key mechanism of background adaptation, offering new insights into amphibian color adaptation and environmental adaptation in other vertebrates.
Collapse
Affiliation(s)
- Runliang Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Di Costanzo LF. Structural characterization of tyrosinases and an update on human enzymes. Enzymes 2024; 56:55-83. [PMID: 39304291 DOI: 10.1016/bs.enz.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinase, a pivotal enzyme in melanin biosynthesis, orchestrates the pigmentation process in humans, affecting skin, hair, and eye color. This chapter examines the three-dimensional structure and functional aspects of tyrosinases from various sources, highlighting their di-metal ion coordination crucial for catalytic activity. I explore the biochemical pathwayscheme catalyzed by tyrosinase, specifically the oxidation of L-tyrosine to L-dopaquinone, a precursor in melanin synthesis. Detailed structural analyses, including 3D structures obtained from X-ray crystallography and computational modeling, reveal key insights into the enzyme's active site, variations among tyrosinases, and substrate binding mechanisms. Furthermore, the chapter investigates the role of human tyrosinase variants, their inhibitors, essential for developing therapeutic and cosmetic applications targeting hyperpigmentation disorders. Structural characterizations of tyrosinase-inhibitor complexes provide a foundation for designing effective inhibitors, with compounds like kojic acid, L-mimosine, and (S)-3-amino-tyrosine demonstrating significant inhibitory potential. This comprehensive examination of the structure, function, and inhibition mechanisms of tyrosinase offers avenues for innovative treatments in biotechnology, health, and beyond.
Collapse
Affiliation(s)
- Luigi Franklin Di Costanzo
- Department of Agriculture, Department of Excellence, University of Naples Federico II, Palace of Portici, Piazza Carlo di Borbone, Portici NA, Italy.
| |
Collapse
|
3
|
Jeon G, Hwang AR, Park DY, Kim JH, Kim YH, Cho BK, Min J. miRNA profiling of B16F10 melanoma cell exosomes reveals melanin synthesis-related genes. Heliyon 2024; 10:e30474. [PMID: 38711645 PMCID: PMC11070906 DOI: 10.1016/j.heliyon.2024.e30474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
This study investigates the communication between skin cells, specifically melanocytes, keratinocytes, and fibroblasts, which is crucial for the process of melanin production known as melanogenesis. We aimed to understand the role of melanocyte exosomes in regulating melanogenesis and to uncover the microRNAs influencing this process. We isolated exosomes and characterized them using advanced microscopy and protein analysis to achieve this. We conducted experiments on melanoma cells to study melanin production regulation and examined how exosomes influenced gene expression related to melanogenesis. The results revealed that melanocyte exosomes increased certain types of tyrosinases, thereby enhancing melanin production. Furthermore, we acquired the miRNA profile of exosomes and hypothesized that specific siRNAs, such as miR-21a-5p, could potentially facilitate melanin synthesis. Our findings shed light on the importance of exosomes in skin health and provide valuable insights into intercellular communication mechanisms. Understanding these processes can pave the way for innovative therapies to treat melanin-related disorders and maintain healthy skin.
Collapse
Affiliation(s)
- Gyeongchan Jeon
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ae Rim Hwang
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Young Park
- Department of Microbiology, Chungbuk National University, Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji-Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
4
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Single-cell profiling of MC1R-inhibited melanocytes. Pigment Cell Melanoma Res 2024; 37:291-308. [PMID: 37972124 DOI: 10.1111/pcmr.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, PT, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, PT, Portugal
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Liang TS, Tang N, Xian MH, Wen WL, Huang CJ, Cai LH, Li QL, Wu YH. Identification of Critical Biomarkers and Mechanisms of Fructus Ligustri Lucidi on Vitiligo Using Integrated Bioinformatics Analysis. Clin Cosmet Investig Dermatol 2023; 16:2061-2071. [PMID: 37575147 PMCID: PMC10416786 DOI: 10.2147/ccid.s413733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Objective Vitiligo is an autoimmune disease of the skin that targets pigment-producing melanocytes and results in patches of depigmentation that are visible as white spots. Recent research studies have yielded a strong mechanistic understanding of this disease. Fructus Ligustri Lucidi (FLL) has been used for premature graying of hair since ancient China and is currently used to treat vitiligo. However, the key biomarkers and mechanisms underlying FLL in vitiligo remain unclear. This study aimed to identify the potential biomarkers and mechanisms of FLL in vitiligo using network pharmacology analysis. Methods The expression profiles of GSE65127 and GSE75819 were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) between the vitiligo and healthy samples. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DEGs were performed using R analyses. We performed R to further understand the functions of the critical targets. Cytoscape tools have facilitated network topology analysis. Molecular docking was performed using Auto Dock Vina software. Results The results showed that 13 DEGs were screened in vitiligo. Based on bioinformatics, network pharmacology and Western blot, we found that the critical targets of melanoma antigen recognized by 5,6-dihydroxyindole-2-carboxylic acid oxidase (TYRP1) may be related to the mechanism of action of FLL in the treatment of vitiligo. Conclusion TYRP1, as a melanocyte molecular biomarker, may be closely related to the underlying mechanism of FLL in the treatment of vitiligo via the inhibition of melanocyte death.
Collapse
Affiliation(s)
- Tian-Shan Liang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| | - Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| | - Ming-Hua Xian
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People’s Republic of China
| | - Wei-Lun Wen
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| | - Chang-Jin Huang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| | - Lan-Hua Cai
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| | - Qi-Lin Li
- Department of Dermatology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| | - Yan-Hua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| |
Collapse
|
6
|
Liu Z, Krstic A, Neve A, Casalou C, Rauch N, Wynne K, Cassidy H, McCann A, Kavanagh E, McCann B, Blanco A, Rauch J, Kolch W. Kinase Suppressor of RAS 1 (KSR1) Maintains the Transformed Phenotype of BRAFV600E Mutant Human Melanoma Cells. Int J Mol Sci 2023; 24:11821. [PMID: 37511580 PMCID: PMC10380721 DOI: 10.3390/ijms241411821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Kinase Suppressor of RAS 1 (KSR1) is a scaffolding protein for the RAS-RAF-MEK-ERK pathway, which is one of the most frequently altered pathways in human cancers. Previous results have shown that KSR1 has a critical role in mutant RAS-mediated transformation. Here, we examined the role of KSR1 in mutant BRAF transformation. We used CRISPR/Cas9 to knock out KSR1 in a BRAFV600E-transformed melanoma cell line. KSR1 loss produced a complex phenotype characterised by impaired proliferation, cell cycle defects, decreased transformation, decreased invasive migration, increased cellular senescence, and increased apoptosis. To decipher this phenotype, we used a combination of proteomic ERK substrate profiling, global protein expression profiling, and biochemical validation assays. The results suggest that KSR1 directs ERK to phosphorylate substrates that have a critical role in ensuring cell survival. The results further indicate that KSR1 loss induces the activation of p38 Mitogen-Activated Protein Kinase (MAPK) and subsequent cell cycle aberrations and senescence. In summary, KSR1 function plays a key role in oncogenic BRAF transformation.
Collapse
Affiliation(s)
- Zhi Liu
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Aleksandar Krstic
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ashish Neve
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Cristina Casalou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Nora Rauch
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Hilary Cassidy
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biomolecular & Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Amanda McCann
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Emma Kavanagh
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Brendan McCann
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Alfonso Blanco
- Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jens Rauch
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biomolecular & Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
7
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Loss of MC1R signaling implicates TBX3 in pheomelanogenesis and melanoma predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532018. [PMID: 37090624 PMCID: PMC10120706 DOI: 10.1101/2023.03.10.532018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The human Red Hair Color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA-sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to reveal a Pheomelanin Gene Signature (PGS) comprising genes implicated in melanogenesis and oncogenic transformation. We show that TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, is part of the PGS and binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into mechanisms by which MC1R signaling regulates pigmentation and how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H. Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Dawn E. Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, PT
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, PT
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
A Network of MicroRNAs and mRNAs Involved in Melanosome Maturation and Trafficking Defines the Lower Response of Pigmentable Melanoma Cells to Targeted Therapy. Cancers (Basel) 2023; 15:cancers15030894. [PMID: 36765859 PMCID: PMC9913661 DOI: 10.3390/cancers15030894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The ability to increase their degree of pigmentation is an adaptive response that confers pigmentable melanoma cells higher resistance to BRAF inhibitors (BRAFi) compared to non-pigmentable melanoma cells. METHODS Here, we compared the miRNome and the transcriptome profile of pigmentable 501Mel and SK-Mel-5 melanoma cells vs. non-pigmentable A375 melanoma cells, following treatment with the BRAFi vemurafenib (vem). In depth bioinformatic analyses (clusterProfiler, WGCNA and SWIMmeR) allowed us to identify the miRNAs, mRNAs and biological processes (BPs) that specifically characterize the response of pigmentable melanoma cells to the drug. Such BPs were studied using appropriate assays in vitro and in vivo (xenograft in zebrafish embryos). RESULTS Upon vem treatment, miR-192-5p, miR-211-5p, miR-374a-5p, miR-486-5p, miR-582-5p, miR-1260a and miR-7977, as well as GPR143, OCA2, RAB27A, RAB32 and TYRP1 mRNAs, are differentially expressed only in pigmentable cells. These miRNAs and mRNAs belong to BPs related to pigmentation, specifically melanosome maturation and trafficking. In fact, an increase in the number of intracellular melanosomes-due to increased maturation and/or trafficking-confers resistance to vem. CONCLUSION We demonstrated that the ability of pigmentable cells to increase the number of intracellular melanosomes fully accounts for their higher resistance to vem compared to non-pigmentable cells. In addition, we identified a network of miRNAs and mRNAs that are involved in melanosome maturation and/or trafficking. Finally, we provide the rationale for testing BRAFi in combination with inhibitors of these biological processes, so that pigmentable melanoma cells can be turned into more sensitive non-pigmentable cells.
Collapse
|
9
|
Farré X, Blay N, Cortés B, Carreras A, Iraola-Guzmán S, de Cid R. Skin Phototype and Disease: A Comprehensive Genetic Approach to Pigmentary Traits Pleiotropy Using PRS in the GCAT Cohort. Genes (Basel) 2023; 14:149. [PMID: 36672889 PMCID: PMC9859115 DOI: 10.3390/genes14010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Human pigmentation has largely been associated with different disease prevalence among populations, but most of these studies are observational and inconclusive. Known to be genetically determined, pigmentary traits have largely been studied by Genome-Wide Association Study (GWAS), mostly in Caucasian ancestry cohorts from North Europe, identifying robustly, several loci involved in many of the pigmentary traits. Here, we conduct a detailed analysis by GWAS and Polygenic Risk Score (PRS) of 13 pigmentary-related traits in a South European cohort of Caucasian ancestry (n = 20,000). We observed fair phototype strongly associated with non-melanoma skin cancer and other dermatoses and confirmed by PRS-approach the shared genetic basis with skin and eye diseases, such as melanoma (OR = 0.95), non-melanoma skin cancer (OR = 0.93), basal cell carcinoma (OR = 0.97) and darker phototype with vitiligo (OR = 1.02), cataracts (OR = 1.04). Detailed genetic analyses revealed 37 risk loci associated with 10 out of 13 analyzed traits, and 16 genes significantly associated with at least two pigmentary traits. Some of them have been widely reported, such as MC1R, HERC2, OCA2, TYR, TYRP1, SLC45A2, and some novel candidate genes C1QTNF3, LINC02876, and C1QTNF3-AMACR have not been reported in the GWAS Catalog, with regulatory potential. These results highlight the importance of the assess phototype as a genetic proxy of skin functionality and disease when evaluating open mixed populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Rafael de Cid
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| |
Collapse
|
10
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Huang Q, Yuan Y, Gong J, Zhang T, Qi Z, Yang X, Li W, Wei A. Identification of a Novel MLPH Missense Mutation in a Chinese Griscelli Syndrome 3 Patient. Front Med (Lausanne) 2022; 9:896943. [PMID: 35602484 PMCID: PMC9120966 DOI: 10.3389/fmed.2022.896943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Melanophilin (MLPH) functions as a linker between RAB27A and myosin Va (MYO5A) in regulating skin pigmentation during the melanosome transport process. The MYO5A-MLPH-RAB27A ternary protein complex is required for anchoring mature melanosomes in the peripheral actin filaments of melanocytes for subsequent transfer to adjacent keratinocytes. Griscelli syndrome type 3 (GS3) is caused by mutations in the MLPH gene. So far, only five variants of MLPH associated with GS3 have been reported. Here, we reported the first patient with GS3 in a Chinese population. The proband carried a novel homozygous missense mutation (c.73G>C; p.D25H), residing in the conserved Slp homology domain of MLPH, and presented with hypopigmentation of the hair, eyebrows, and eyelashes. Light microscopy revealed the presence of abnormal pigment clumping in his hair shaft. In silico tools predicted this MLPH variant to be likely pathogenic. Using immunoblotting and immunofluorescence analysis, we demonstrated that the MLPH (D25H) variant had an inhibitory effect on melanosome transport by exhibiting perinuclear melanosome aggregation in melanocytes, and greatly reduced its binding to RAB27A, although the protein level of MLPH in the patient was not changed. Our findings suggest that MLPH (D25H) is a pathogenic variant that expands the genetic spectrum of the MLPH gene.
Collapse
Affiliation(s)
- Qiaorong Huang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
| | - Juanjuan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianjiao Zhang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiumin Yang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Wei Li
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Aihua Wei
| |
Collapse
|
12
|
Velasco-Aviles S, Patel N, Casillas-Bajo A, Frutos-Rincón L, Velasco E, Gallar J, Arthur-Farraj P, Gomez-Sanchez JA, Cabedo H. A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair. eLife 2022; 11:e72917. [PMID: 35076395 PMCID: PMC8853665 DOI: 10.7554/elife.72917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5, and 7 but not Hdac9. Here, we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4, 5, and 7 are simultaneously removed, the myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.
Collapse
Affiliation(s)
- Sergio Velasco-Aviles
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Nikiben Patel
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Angeles Casillas-Bajo
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Laura Frutos-Rincón
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
| | - Enrique Velasco
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
| | - Juana Gallar
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
- RICORS en enfermedades inflamatoriasSant Joan d'AlacantSpain
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | | | - Hugo Cabedo
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| |
Collapse
|
13
|
Kyjacova L, Saup R, Rothley M, Schmaus A, Wagner T, Boßerhoff A, Garvalov BK, Thiele W, Sleeman JP. Quantitative Detection of Disseminated Melanoma Cells by Trp-1 Transcript Analysis Reveals Stochastic Distribution of Pulmonary Metastases. J Clin Med 2021; 10:jcm10225459. [PMID: 34830742 PMCID: PMC8618565 DOI: 10.3390/jcm10225459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
A better understanding of the process of melanoma metastasis is required to underpin the development of novel therapies that will improve patient outcomes. The use of appropriate animal models is indispensable for investigating the mechanisms of melanoma metastasis. However, reliable and practicable quantification of metastases in experimental mice remains a challenge, particularly if the metastatic burden is low. Here, we describe a qRT-PCR-based protocol that employs the melanocytic marker Trp-1 for the sensitive quantification of melanoma metastases in the murine lung. Using this protocol, we were able to detect the presence of as few as 100 disseminated melanoma cells in lung tissue. This allowed us to quantify metastatic burden in a spontaneous syngeneic B16-F10 metastasis model, even in the absence of visible metastases, as well as in the autochthonous Tg(Grm1)/Cyld−/− melanoma model. Importantly, we also observed an uneven distribution of disseminated melanoma cells amongst the five lobes of the murine lung, which varied considerably from animal to animal. Together, our findings demonstrate that the qRT-PCR-based detection of Trp-1 allows the quantification of low pulmonary metastatic burden in both transplantable and autochthonous murine melanoma models, and show that the analysis of lung metastasis in such models needs to take into account the stochastic distribution of metastatic lesions amongst the lung lobes.
Collapse
Affiliation(s)
- Lenka Kyjacova
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Rafael Saup
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Melanie Rothley
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Anja Schmaus
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Tabea Wagner
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Anja Boßerhoff
- Institute of Biochemistry, Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany;
| | - Boyan K. Garvalov
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Wilko Thiele
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Jonathan P. Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
- Correspondence: ; Tel.: +49-621-383-71595
| |
Collapse
|
14
|
Li G, Zhu X, Liu C. Characterization of Immune Infiltration and Construction of a Prediction Model for Overall Survival in Melanoma Patients. Front Oncol 2021; 11:639059. [PMID: 33869027 PMCID: PMC8051586 DOI: 10.3389/fonc.2021.639059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Reports indicate that the use of anti-programmed cell death-1 (PD-1) and death ligand-1 (PD-L1) monoclonal antibodies for the treatment of patients diagnosed with melanoma has demonstrated promising efficacy. Nonetheless, this therapy is limited by the resistance induced by the tumor microenvironment (TME). As such, understanding the complexity of the TME is vital in enhancing the efficiency of immunotherapy. This study used four different methods to estimate the infiltrating level of immune cells. Besides, we analyzed their infiltration pattern in primary and metastatic melanoma obtained from The Cancer Genome Atlas (TCGA) database. As a consequence, we discovered a significantly higher infiltration of immune cells in metastatic melanoma compared to primary tumor. Consensus clustering identified four clusters in melanoma with different immune infiltration and clusters with higher immune infiltration demonstrated a better overall survival. To elucidate the underlying mechanisms of immune cell infiltration, the four clusters were subdivided into two subtypes denoted as hot and cold tumors based on immune infiltration and predicted immune response. Enrichment analysis of differentially expressed genes (DEGs) revealed different transcriptome alterations in two types of tumors. Additionally, we found tyrosinase-related protein1 (TYRP1) was negatively correlated with CD8A expression. In vitro experiments showed that knockdown TYRP1 promoted the expression of HLA-A, B, and C. Eventually, we constructed a prediction model which was validated in our external cohort. Notably, this model also performed effectively in predicting the survival of patients under immunotherapy. In summary, this work provides a deeper understanding of the state of immune infiltration in melanoma and a prediction model that might guide the clinical treatment of patients with melanoma.
Collapse
Affiliation(s)
- Gang Li
- Plastic Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | |
Collapse
|