1
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Shahab SW, Patil P, Fangusaro JR, Patteson B, Goldman-Yassen A, Eaton BR, Boydston W, Schniederjan M, Aguilera D. Primary Diffuse Leptomeningeal Melanomatosis in a Child with Extracranial Metastasis: Case Report. Curr Oncol 2024; 31:579-587. [PMID: 38275834 PMCID: PMC10814890 DOI: 10.3390/curroncol31010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Primary meningeal melanomatosis is an extremely rare tumor with very few documented responses to treatment. A 3-year-old male with a complex past medical history, including prematurity and shunted hydrocephalus, was diagnosed with primary meningeal melanomatosis with peritoneal implants. Molecular testing revealed an NRAS Q61R mutation. The patient received proton craniospinal radiation followed by immunotherapy with nivolumab (1 mg/kg) and ipilimumab (3 mg/kg) IV every 3 weeks and, upon progression, he was switched to a higher dose of nivolumab (3 mg/kg IV every 2 weeks) and binimetinib (24 mg/m2/dose, twice a day). The patient had significant improvement of CNS disease with radiation therapy and initial immunotherapy but progression of extracranial metastatic peritoneal and abdominal disease. Radiation was not administered to the whole abdomen. After two cycles of nivolumab and treatment with the MEK inhibitor binimetinib, he had radiographic and clinical improvement in abdominal metastasis and ascitis. He ultimately died from RSV infection, Klebsiella sepsis, and subdural hemorrhage without evidence of tumor progression. This is the first report of a child with primary meningeal melanomatosis with extracranial metastatic disease with response to a combination of radiation, immunotherapy and MEK inhibitor therapy.
Collapse
Affiliation(s)
- Shubin W. Shahab
- Aflac Cancer and Blood Disorders Center, Atlanta, GA 30342, USA; (J.R.F.); (B.P.); (D.A.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Prabhumallikarjun Patil
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason R. Fangusaro
- Aflac Cancer and Blood Disorders Center, Atlanta, GA 30342, USA; (J.R.F.); (B.P.); (D.A.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Brooke Patteson
- Aflac Cancer and Blood Disorders Center, Atlanta, GA 30342, USA; (J.R.F.); (B.P.); (D.A.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
| | - Adam Goldman-Yassen
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bree R. Eaton
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
- Winship Cancer Institute, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Boydston
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew Schniederjan
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dolly Aguilera
- Aflac Cancer and Blood Disorders Center, Atlanta, GA 30342, USA; (J.R.F.); (B.P.); (D.A.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (P.P.); (A.G.-Y.); (B.R.E.); (W.B.); (M.S.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|