1
|
Ettienne EB, Grant-Kels JM, Striano P, Russo E, Neubauer D, Rose K. Melanoma and pediatric drug development: clinical progress vs. regulatory activism in minors - a narrative review. Expert Opin Pharmacother 2025. [PMID: 40035212 DOI: 10.1080/14656566.2025.2475184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Melanoma is the malignancy where in recent years drug treatment has massively improved prognosis and quality of life. Based on genetic analysis, we differentiate today melanomas caused by cumulative solar damage (CSD) from others. AREAS COVERED Conventional CSD-caused melanomas affect predominantly adults and occasionally adolescents. Spitz melanoma and melanoma arising in congenital nevi, the two other pediatric melanama types, are not CSD-caused, are genetically different, have different prognoses, and need different treatment. In contrast to the improved situation in adult melanoma, regulatory demand for pediatric labels in minors has resulted in pointless and harmful studies and has obfuscated diagnosis and treatment. Modern communication facilitates a worldwide analysis of extremely rare diseases such as melanoma in minors. Regulatory demand for on-label treatment only is demonstrably wrong for pediatric melanomas. They are too rare for randomized controlled trials but nevertheless deserve effective treatment. EXPERT OPINION Adolescents with conventional, CSD-caused melanoma should be treated as adults. Their body is already mature. For other childhood melanomas registries and consultation with clinical specialists are better options than dogmatically demanded regulatory studies.
Collapse
Affiliation(s)
| | | | | | - Emilio Russo
- University of Magna Graecia, Pharmacology, Catanzaro, Italy
| | | | - Klaus Rose
- klausrose Consulting, Riehen, BS, Switzerland
| |
Collapse
|
2
|
He X, Deng H, Liu W, Hu L, Tan X. Advances in Understanding Drug Resistance Mechanisms and Innovative Clinical Treatments for Melanoma. Curr Treat Options Oncol 2024; 25:1615-1633. [PMID: 39633237 DOI: 10.1007/s11864-024-01279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
OPINION STATEMENT Melanoma, a highly invasive skin cancer resulting from melanocyte malignant transformation, is the third most common skin malignancy. Despite accounting for only 4% to 5% of all skin malignancies, it is responsible for 80% of skin cancer-related deaths. Targeted therapies and immune checkpoint inhibitors have improved survival rates, yet drug resistance remains a major challenge. In this review, I explore the latest research progress on melanoma drug resistance mechanisms and clinical treatment methods. This aims to provide insights for more effective treatment strategies and improve patient prognosis and quality of life. I also discuss potential strategies to overcome drug resistance based on the latest scientific findings, with a particular focus on the complex and multi-factorial drug resistance mechanisms of melanomas, including genetic mutations, epigenetic changes, and tumor microenvironment factors. Understanding these mechanisms is crucial for developing new drugs and combination therapies targeting drug-resistant tumors. Analyzing complex drug resistance pathways paves the way for personalized medical approaches, which is expected to provide enlightenment on breaking through drug resistance barriers and enhancing the effectiveness of melanoma treatment.
Collapse
Affiliation(s)
- Xiaoya He
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hao Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China
| | - Liling Hu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China.
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China.
| |
Collapse
|
3
|
Liu Y, Wang L, Huang T, Li Y, Zhang H. Integrative Gut Microbiota and Metabolomic Analyses Reveal the PANoptosis- and Ferroptosis-Related Mechanisms of Chrysoeriol in Inhibiting Melanoma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25173-25185. [PMID: 39497239 DOI: 10.1021/acs.jafc.4c07416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Chrysoeriol, a natural flavonoid, has shown potential in inhibiting melanoma. However, the detailed molecular mechanisms of its action still need to be clarified. In this study, chrysoeriol showed significant suppressive effects on melanoma progression in a mouse model. The integrative gut microbiota and metabolomic analyses revealed that chrysoeriol modulates multiple pathways associated with apoptosis, necroptosis, pyroptosis, and ferroptosis. Morphological changes in chrysoeriol-treated melanoma cells showed PANoptosis- and ferroptosis-related characteristics. Additionally, chrysoeriol induced apoptosis, altered mitochondrial membrane potential, increased ROS production, promoted necroptosis, and also upregulated molecules linked to pyroptosis and ferroptosis. Molecular-level experiments confirmed that chrysoeriol promoted the upregulation of crucial proteins associated with the PANoptosis and ferroptosis pathways. Inhibition of PANoptosis and ferroptosis pathways by inhibitors or gene knockdown significantly attenuated the inhibitory effects of chrysoeriol on melanoma cell viability. This study provides robust evidence that chrysoeriol triggers both PANoptosis and ferroptosis in melanoma cells, underscoring its promise as a treatment option for melanoma.
Collapse
Affiliation(s)
- Yuxi Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an 710003, China
| | - Lu Wang
- Middle section of Century Avenue, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Tingting Huang
- Northwestern University, No. 229 Taibai North Road, Beilin District, Xi'an 710069, China
| | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an 710003, China
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an 710003, China
- Middle section of Century Avenue, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- Northwestern University, No. 229 Taibai North Road, Beilin District, Xi'an 710069, China
| |
Collapse
|
4
|
Valcikova B, Vadovicova N, Smolkova K, Zacpalova M, Krejci P, Lee S, Rauch J, Kolch W, von Kriegsheim A, Dorotikova A, Andrysik Z, Vichova R, Vacek O, Soucek K, Uldrijan S. eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations. Proc Natl Acad Sci U S A 2024; 121:e2321305121. [PMID: 39436655 PMCID: PMC11536119 DOI: 10.1073/pnas.2321305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.
Collapse
Affiliation(s)
- Barbora Valcikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Natalia Vadovicova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Karolina Smolkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Laboratory of Cell Signaling, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno60200, Czech Republic
| | - Shannon Lee
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
| | - Jens Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, DublinD04 V1W8, Ireland
| | - Alexander von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XR, United Kingdom
| | - Anna Dorotikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Rachel Vichova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
| | - Ondrej Vacek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Karel Soucek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| |
Collapse
|
5
|
Polivka J, Gouda M, Sharif M, Pesta M, Huang H, Treskova I, Woznica V, Windrichova J, Houfkova K, Kucera R, Fikrle T, Ricar J, Pivovarcikova K, Topolcan O, Janku F. Predictive Significance of Combined Plasmatic Detection of BRAF Mutations and S100B Tumor Marker in Early-Stage Malignant Melanoma. Cancer Med 2024; 13:e70313. [PMID: 39387479 PMCID: PMC11465285 DOI: 10.1002/cam4.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Melanoma is the most aggressive skin cancer with ability to recur also after early-stage tumor surgery. The aim was to identify early-stage melanoma patients at high risk of recurrence using liquid biopsy, estimating of mutated BRAF ctDNA and the level of tumor marker S100B in plasma. METHODS Eighty patients were enrolled in the study. BRAF V600E mutation was determined in FFPE tissue and plasma samples using ultrasensitive ddPCR with pre-amplification. The level of S100B was determined in plasma by immunoassay chemiluminescent method. RESULTS The best prediction of melanoma recurrence after surgery was observed in patients with combined high level of S100B (S100Bhigh) and ctDNA BRAFV600E (BRAFmut) in preoperative (57.1% vs. 12.5%, p = 0.025) as well as postoperative blood samples (83.3% vs. 14.3%, resp., p = 0.001) in comparison with low S100B and BRAF wild-type. Similarly, patients with preoperative and postoperative S100Bhigh and BRAFmut experienced worse prognosis (DFI p = 0.05, OS p = 0.131 and DFI p = 0.001, OS = 0.001, resp.). CONCLUSION We observed the benefit of the estimation of combination of S100B and ctDNA BRAFmut in peripheral blood for identification of patients at high risk of recurrence and unfavorable prognosis. SIGNIFICANCE There is still no general consensus on molecular markers for deciding the appropriateness of adjuvant treatment of early-stage melanoma. We have shown for the first time that the combined determination of the ctDNA BRAFmut oncogene (liquid biopsy) and the high level of tumor marker S100B in pre- and postoperative plasma samples can identify patients with the worst prognosis and the highest risk of tumor recurrence. Therefore, modern adjuvant therapy would be appropriate for these patients with resectable melanoma, regardless of disease stage.
Collapse
Affiliation(s)
- Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Mohamed A. Gouda
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Mahyar Sharif
- Department of Histology and Embryology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Helen Huang
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Inka Treskova
- Department of Plastic SurgeryUniversity Hospital PilsenPilsenCzech Republic
| | - Vlastimil Woznica
- Department of Plastic SurgeryUniversity Hospital PilsenPilsenCzech Republic
| | - Jindra Windrichova
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Radek Kucera
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
- Department of Pharmacology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Tomas Fikrle
- Department of DermatovenerologyUniversity Hospital PilsenPilsenCzech Republic
| | - Jan Ricar
- Department of DermatovenerologyUniversity Hospital PilsenPilsenCzech Republic
| | | | - Ondrej Topolcan
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
| | - Filip Janku
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
6
|
Lu F, Wang L, Ma X, Li Y. A Mendelian randomization study of genetic liability to cutaneous melanoma and sunburns. Front Oncol 2024; 14:1393833. [PMID: 39281383 PMCID: PMC11392754 DOI: 10.3389/fonc.2024.1393833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Some studies have reported that sunburns and cutaneous melanoma (CM) risk is increasing, but a clear causal link has yet to be established. Methods This current study conducted a two-sample Mendelian randomization (MR) approach to clarify the association and causality between sunburn history and CM using large-scale genome-wide association study data. Results The inverse-variance weighted method result showed that sunburn might be associated with the risk of CM increasing (p = 2.21 × 10-23, OR = 1.034, 95% CI= 1.027-1.041), causally. The MR-Egger regression, weighted median method, simple mode method, and weighted mode method results showed similar results. Conclusion This study offers evidence of sunburn history and increased risk of CM, and it shows that there might be common genetic basics regarding sunburns and CM susceptibility in Caucasian, European, or British ethnic groups.
Collapse
Affiliation(s)
- Fengmin Lu
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xixing Ma
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanling Li
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Paolino G, Pampena R, Di Ciaccio SM, Carugno A, Cantisani C, Di Nicola MR, Losco L, Bortone G, Mercuri SR, Costanzo A, Ardigò M, Valenti M. Thin Amelanotic and Hypomelanotic Melanoma: Clinicopathological and Dermoscopic Features. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1239. [PMID: 39202520 PMCID: PMC11356094 DOI: 10.3390/medicina60081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Amelanotic/hypomelanotic melanomas (AHMs) account for 2-8% of all cutaneous melanomas. Due to their clinical appearance and the lack of specific dermoscopic indicators, AHMs are challenging to diagnose, particularly in thinner cutaneous lesions. The aim of our study was to evaluate the clinicopathological and dermoscopic features of thin AHMs. Identifying the baseline clinical-pathological features and dermoscopic aspects of thin AHMs is crucial to better understand this entity. Materials and Methods: We divided the AHM cohort into two groups based on Breslow thickness: thin (≤1.00 mm) and thick (>1.00 mm). This stratification helped identify any significant clinicopathological differences between the groups. For dermoscopic analysis, we employed the "pattern analysis" approach, which involves a simultaneous and subjective assessment of different criteria. Results: Out of the 2.800 melanomas analyzed for Breslow thickness, 153 were identified as AHMs. Among these, 65 patients presented with thin AHMs and 88 with thick AHMs. Red hair color and phototype II were more prevalent in patients with thin AHMs. The trunk was the most common anatomic site for thin AHMs. Patients with thin AHMs showed a higher number of multiple melanomas. Dermoscopic analysis revealed no significant difference between thin AHMs and thick AHMs, except for a more frequent occurrence of residual reticulum in thin AHMs. Conclusions: Thin AHMs typically affect individuals with lower phototypes and red hair color. These aspects can be related to the higher presence of pheomelanin, which provides limited protection against sun damage. This also correlates with the fact that the trunk, a site commonly exposed to intermittent sun exposure, is the primary anatomical location for thin AHMs. Multiple primary melanomas are more common in patients with thin AHMs, likely due to an intrinsic predisposition as well as greater periodic dermatologic follow-ups in this class of patients. Apart from the presence of residual reticulum, no other significant dermoscopic differences were observed, complicating the differential diagnosis between thin and thick AHMs based on dermoscopy alone.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
| | - Riccardo Pampena
- La Sapienza University of Rome, 00185 Rome, Italy; (R.P.); (S.M.D.C.)
| | | | - Andrea Carugno
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Carmen Cantisani
- Dermatologic Clinic, La Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (G.B.)
| | - Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
| | - Luigi Losco
- Plastic Surgery Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy;
| | - Giulio Bortone
- Dermatologic Clinic, La Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (G.B.)
| | - Santo Raffaele Mercuri
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
- UniSr Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Antonio Costanzo
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| | - Marco Ardigò
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| | - Mario Valenti
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| |
Collapse
|
8
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
9
|
Kim HJ, Kim YH. Molecular Frontiers in Melanoma: Pathogenesis, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:2984. [PMID: 38474231 DOI: 10.3390/ijms25052984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma, a highly aggressive skin cancer, is characterized by rapid progression and high mortality. Recent advances in molecular pathogenesis have shed light on genetic and epigenetic changes that drive melanoma development. This review provides an overview of these developments, focusing on molecular mechanisms in melanoma genesis. It highlights how mutations, particularly in the BRAF, NRAS, c-KIT, and GNAQ/GNA11 genes, affect critical signaling pathways. The evolution of diagnostic techniques, such as genomics, transcriptomics, liquid biopsies, and molecular biomarkers for early detection and prognosis, is also discussed. The therapeutic landscape has transformed with targeted therapies and immunotherapies, improving patient outcomes. This paper examines the efficacy, challenges, and prospects of these treatments, including recent clinical trials and emerging strategies. The potential of novel treatment strategies, including neoantigen vaccines, adoptive cell transfer, microbiome interactions, and nanoparticle-based combination therapy, is explored. These advances emphasize the challenges of therapy resistance and the importance of personalized medicine. This review underlines the necessity for evidence-based therapy selection in managing the increasing global incidence of melanoma.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|