3
|
Gao X, Zhang W, Yao L, Xiao Y, Liu L, Liu J, Li S, Tao B, Shah C, Gong Q, Sweeney JA, Lui S. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis. J Psychiatry Neurosci 2017; 43:160219. [PMID: 29244020 PMCID: PMC5837885 DOI: 10.1503/jpn.160219] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 08/29/2017] [Accepted: 09/09/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. METHODS We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. RESULTS We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. LIMITATIONS The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. CONCLUSION The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.
Collapse
Affiliation(s)
- Xin Gao
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Wenjing Zhang
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Li Yao
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Yuan Xiao
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Lu Liu
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Jieke Liu
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Siyi Li
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Bo Tao
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Chandan Shah
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Qiyong Gong
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - John A Sweeney
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| | - Su Lui
- From the Department of Radiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Gao, Lui); the Department of Radiology, the Centre for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Gao, Zhang, Yao, Xiao, Liu, Li, Tao, Shah, Gong, Lui); and the Department of Psychiatry, University of Texas Southwestern, Dallas, Tex, USA (Sweeney)
| |
Collapse
|
4
|
Hidese S, Ota M, Matsuo J, Ishida I, Hiraishi M, Teraishi T, Hattori K, Kunugi H. Association between the scores of the Japanese version of the Brief Assessment of Cognition in Schizophrenia and whole-brain structure in patients with chronic schizophrenia: A voxel-based morphometry and diffusion tensor imaging study. Psychiatry Clin Neurosci 2017; 71:826-835. [PMID: 28755401 DOI: 10.1111/pcn.12560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/18/2023]
Abstract
AIM The Brief Assessment of Cognition in Schizophrenia (BACS) is a concise tool designed to evaluate cognitive deficits in schizophrenia. We examined the possible association between BACS scores and whole-brain structure, as observed using magnetic resonance imaging with a relatively large sample. METHODS The study sample comprised 116 patients with schizophrenia (mean age, 39.3 ± 11.1 years; 66 men) and 118 healthy controls (HC; mean age, 40.0 ± 13.6 years; 58 men) who completed the Japanese version of the BACS (BACS-J). All participants were of Japanese ethnicity. The magnetic resonance imaging volume and diffusion tensor imaging data were processed with voxel-based morphometry and tract-based spatial statistics, respectively. RESULTS There were significant reductions in the regional gray matter volumes and white matter fractional anisotropy values in patients with schizophrenia compared to HC. For the gray matter areas, the working memory score had a significant positive correlation with the anterior cingulate and medial frontal cortices volumes in the patients. For the white matter areas, the motor speed score had a significant positive correlation with fractional anisotropy values in the corpus callosum, internal capsule, superior corona radiata, and superior longitudinal fasciculus in the patients. However, there was no significant correlation among either the gray or white matter areas in the HC. CONCLUSION Our results suggest that among the BACS-J measures, the working memory and motor speed scores are associated with several structural alterations in the brains of patients with schizophrenia.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Division of Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Moeko Hiraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Division of Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Feng P, Akladious AA, Hu Y, Raslan Y, Feng J, Smith PJ. 7,8-Dihydroxyflavone reduces sleep during dark phase and suppresses orexin A but not orexin B in mice. J Psychiatr Res 2015; 69:110-9. [PMID: 26343602 DOI: 10.1016/j.jpsychires.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) binds to Tropomyosin-receptor-kinase B (TrkB) receptors that regulate synaptic strength and plasticity in the mammalian nervous system. 7,8-Dihydroxyflavone (DHF) is a recently identified small molecule Trk B agonist that has been reported to ameliorate depression, attenuate the fear response, improve memory consolidation, and exert neuroprotective effects. Poor and disturbed sleep remains a symptom of major depressive disorder and most current antidepressants affect sleep. Therefore, we conducted sleep/wake recordings and concomitant measurement of brain orexins, endogenous peptides that suppress sleep, in mice for this study. Baseline polysomnograph recording was performed for 24 h followed by treatment with either 5 mg/kg of DHF or vehicle at the beginning of the dark phase. Animals were sacrificed the following day, one hour after the final treatment with DHF. Orexin A and B were quantified using ELISA and radioimmunoassay, respectively. Total sleep was significantly decreased in the DHF group, 4 h after drug administration in the dark phase, when compared with vehicle-treated animals. This difference was due to a significant decrease of non-rapid eye movement sleep, but not rapid eye movement sleep. DHF increased power of alpha and sigma bands but suppressed power of gamma band during sleep in dark phase. Interestingly, hypothalamic levels of orexin A were also significantly decreased in the DHF group (97 pg/mg) when compared with the vehicle-treated group (132 pg/mg). However, no significant differences of orexin B were observed between groups. Additionally, no change was found in immobility tests.
Collapse
Affiliation(s)
- Pingfu Feng
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | | | - Yufen Hu
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yousef Raslan
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - James Feng
- Louis Stokes Cleveland DVA Medical Center, USA
| | - Phillip J Smith
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|