1
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Yuan H, Peng Z, Zhang M, Li H, Lu K, Yang C, Li M, Liu S. Antagonising Yin Yang 1 ameliorates the symptoms of lupus nephritis via modulating T lymphocyte signaling. Pharmacol Res 2024; 210:107525. [PMID: 39613121 DOI: 10.1016/j.phrs.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Lupus nephritis (LN) is a chronic complication of systemic lupus erythematosus (SLE). At present, no drugs are capable of delaying the progression of LN without a risk of serious side effects. There is thus a pressing need for further studies of LN pathogenesis to identify novel therapeutic targets and aid in the development of new approaches to treating this debilitating disease. In this study, a multi-omics approach was used to characterize the pathogenesis of LN and to identify disease-related targets, ultimately leading to the identification and validation of Yin Yang 1 (YY1) as a promising therapeutic target in LN. A rapid approach to efficiently screening for candidate YY1 ligands was implemented using drug databases that established rebamipide as a YY1 antagonist suitable for use in the management of LN. Specifically, the YY1 antagonist activity of rebamipide was found to regulate lymphocyte activity, reduce autoantibody production, limit immune complex deposition, and suppress macrophage activation while improving symptoms in a murine model of LN. Results supportive of a similar pathologic mechanism of action were also obtained when analyzing renal tissue sections from LN patients, underscoring the potential clinical significance of YY1 and its antagonist rebamipide, suggesting that rebamipide may have positive effects on lymphocytes and may improve symptoms in treated patients. This study provides a robust foundation for further research focused on the pathogenesis and treatment of LN.
Collapse
Affiliation(s)
- Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meilian Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China; Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases of Ministry of Education, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China.
| |
Collapse
|
3
|
Cao Y, Wang D, Zhou D. MSC Promotes the Secretion of Exosomal lncRNA KLF3-AS1 to Regulate Sphk1 Through YY1-Musashi-1 Axis and Improve Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:10462-10480. [PMID: 38735900 DOI: 10.1007/s12035-024-04150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024]
Abstract
Stroke remains the 3rd leading cause of long-term disability globally. Over the past decade, mesenchymal stem cell (MSC) transplantation has been proven as an effective therapy for ischemic stroke. However, the mechanism of MSC-derived exosomal lncRNAs during cerebral ischemia/reperfusion (I/R) remains ambiguous. The oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion (MCAO) rat model were generated. MSCs were isolated and characterized by flow cytometry and histochemical staining, and MSC exosomes were purified and characterized by transmission electron microscopy, flow cytometry and Western blot. Western blot, RT-qPCR and ELISA assay were employed to examine the expression or secretion of key molecules. CCK-8 and TUNEL assays were used to assess cell viability and apoptosis. RNA immunoprecipitation and RNA pull-down were used to investigate the direct association between krüppel-like factor 3 antisense RNA 1 (KLF3-AS1) and musashi-1(MSI1). Yin Yang 1 (YY1)-mediated transcriptional regulation was assessed by chromatin immunoprecipitation and luciferase assays. The histological changes and immunoreactivity of key molecules in brain tissues were examined by H&E and immunohistochemistry. MSCs were successfully isolated and exhibited directionally differential potentials. MSC exosomal KLF3-AS1 alleviated OGD/R-induced inflammation in SK-N-SH and SH-SY5Y cells via modulating Sphk1. Mechanistical studies showed that MSI1 positively regulated KLF3-AS1 expression through its direct binding to KLF3-AS1. YY1 was identified as a transcription activator of MSI1 in MSCs. Functionally, YY1/MSI1 axis regulated the release of MSC exosomal KLF3-AS1 to modulate sphingosine kinase 1 (Sphk1)/NF-κB pathway, thereby ameliorating OGD/R- or cerebral I/R-induced injury. MSCs promote the release of exosomal KLF3-AS1 to regulate Sphk1 through YY1/MSI axis and improve cerebral I/R injury.
Collapse
Affiliation(s)
- Yu Cao
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China
| | - Daodao Wang
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China
| | - Dingzhou Zhou
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China.
| |
Collapse
|
4
|
Chen B, Jin K, Dong J, Cheng S, Kong L, Hu S, Chen Z, Lu J. Hypocretin-1/Hypocretin Receptor 1 Regulates Neuroplasticity and Cognitive Function through Hippocampal Lactate Homeostasis in Depressed Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405354. [PMID: 39119889 PMCID: PMC11481194 DOI: 10.1002/advs.202405354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Cognitive dysfunction is not only a common symptom of major depressive disorder, but also a more common residual symptom after antidepressant treatment and a risk factor for chronic and recurrent disease. The disruption of hypocretin regulation is known to be associated with depression, however, their exact correlation is remains to be elucidated. Hypocretin-1 levels are increased in the plasma and hypothalamus from chronic unpredictable mild stress (CUMS) model mice. Excessive hypocretin-1 conducted with hypocretin receptor 1 (HCRTR1) reduced lactate production and brain-derived neurotrophic factor (BDNF) expression by hypoxia-inducible factor-1α (HIF-1α), thus impairing adult hippocampal neuroplasticity, and cognitive impairment in CUMS model. Subsequently, it is found that HCRTR1 antagonists can reverse these changes. The direct effect of hypocretin-1 on hippocampal lactate production and cognitive behavior is further confirmed by intraventricular injection of hypocretin-1 and microPET-CT in rats. In addition, these mechanisms are further validated in astrocytes and neurons in vitro. Moreover, these phenotypes and changes in molecules of lactate transport pathway can be duplicated by specifically knockdown of HCRTR1 in hippocampal astrocytes. In summary, the results provide molecular and functional insights for involvement of hypocretin-1-HCRTR1 in altered cognitive function in depression.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Kangyu Jin
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jingyi Dong
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shangping Cheng
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Lingzhuo Kong
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shaohua Hu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Key Laboratory of Precision psychiatryHangzhou310003China
| | - Zuobing Chen
- Department of Rehabilitation MedicineThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jing Lu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Key Laboratory of Precision psychiatryHangzhou310003China
| |
Collapse
|
5
|
Lv T, Xue D, Wang P, Gong W, Wang K. Vanillic Acid Protects PC12 Cells from Corticosterone-Induced Neurotoxicity via Regulating Immune and Metabolic Dysregulation Based on Computational Metabolomics. ACS OMEGA 2024; 9:40456-40467. [PMID: 39372012 PMCID: PMC11447713 DOI: 10.1021/acsomega.4c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 10/08/2024]
Abstract
Vanillic acid is widely used in the food industry and exhibits an excellent neuroprotective effect. Nevertheless, the mechanisms underlying them are largely unexplored, especially the interactions between the neuroprotection effects of vanillic acid and inflammation-immunity-metabolism. A cell metabolomics-based mathematics algorithm was reported to interpret the potential mechanism of vanillic acid on corticosterone-induced PC12 cells by regulating immune and metabolic dysregulation. Our results showed that vanillic acid markedly inhibited the level of inflammatory factors in corticosterone-induced PC12 cells. Cell metabolomics results suggested that vanillic acid regulated the abnormality of corticosterone-induced PC12 cell metabolic profiles and markedly regulated 11 differential metabolites. Our designed scoring model base entropy weight algorithm showed that the core targets (IL2RB, IFNA13, etc.) and metabolites (lactate, ethanolamine, etc.) regulate the immunity-metabolism of vanillic acid. Furthermore, we demonstrated that vanillic acid inhibited IL2RB expression and modulated the related pathway, JAK1/STAT3 signaling. The JAK inhibitor ABT-494 was further applied to validate the effect of vanillic acid on the JAK/STAT pathway. Results indicate that vanillic acid regulates the abnormal interactions of inflammation-immunity-metabolism by repressing the IL2RB-JAK1-STAT3 pathway. Methodologically, this study contributes to the decoding of vanillic acid's antidepressive effect from the metabolism perspective combined with computer algorithms and mathematics models.
Collapse
Affiliation(s)
- Tianxing Lv
- Institute
of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Daojin Xue
- The
Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Peng Wang
- School
of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Wenxia Gong
- Modern
Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kexin Wang
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Huang T, Ren K, Ling X, Li Z, Chen L. Transcription factor Yin Yang 1 enhances epithelial-mesenchymal transition, migration, and stemness of non-small cell lung cancer cells by targeting sonic hedgehog. Mol Cell Biochem 2024:10.1007/s11010-024-05104-y. [PMID: 39261409 DOI: 10.1007/s11010-024-05104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a frequent type of lung cancer. Transcription factor Yin Yang 1 (YY1), an endogenous transcription factor containing zinc finger structure, can accelerate NSCLC progression. However, the impact of YY1 on the stemness of NSCLC cells and the mechanism of promoting NSCLC cell progression is unclear. YY1 and Sonic hedgehog (Shh) expressions were monitored by RT-qPCR, western blot, and immunohistochemistry. Overall survival was tested through Kaplan-Meier analysis. The interaction between YY1 and Shh was confirmed. Then, cell migration, stemness, and epithelial-mesenchymal transition (EMT) were assessed with functional experiments in vitro and in vivo. YY1 and Shh were highly expressed in NSCLC tissues and positively correlated with the poor OS of NSCLC patients. Functional experiments denoted that YY1 or Shh overexpression could accelerate EMT, migration, and stemness of NSCLC cells, and YY1 or Shh knockdown played the opposite role to its overexpression. Mechanism analysis disclosed that Shh, as a target gene of YY1, was positively related to YY1. The rescued experiment manifested that Shh silencing could reverse the induction effect of YY1 overexpression on EMT, migration, and stemness of NSCLC cells. In vivo experiments also confirmed that YY1 could accelerate tumor growth and EMT and weaken apoptosis. YY1 promotes NSCLC EMT, migration, and stemness by Shh, which might be novel diagnostic markers and therapeutic targets for NSCLC therapy.
Collapse
Affiliation(s)
- Tonghai Huang
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China.
| | - Kangqi Ren
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Xiean Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Zeyao Li
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Lin Chen
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
7
|
Damarov IS, Korbolina EE, Rykova EY, Merkulova TI. Multi-Omics Analysis Revealed the rSNPs Potentially Involved in T2DM Pathogenic Mechanism and Metformin Response. Int J Mol Sci 2024; 25:9297. [PMID: 39273245 PMCID: PMC11394919 DOI: 10.3390/ijms25179297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The goal of our study was to identify and assess the functionally significant SNPs with potentially important roles in the development of type 2 diabetes mellitus (T2DM) and/or their effect on individual response to antihyperglycemic medication with metformin. We applied a bioinformatics approach to identify the regulatory SNPs (rSNPs) associated with allele-asymmetric binding and expression events in our paired ChIP-seq and RNA-seq data for peripheral blood mononuclear cells (PBMCs) of nine healthy individuals. The rSNP outcomes were analyzed using public data from the GWAS (Genome-Wide Association Studies) and Genotype-Tissue Expression (GTEx). The differentially expressed genes (DEGs) between healthy and T2DM individuals (GSE221521), including metformin responders and non-responders (GSE153315), were searched for in GEO RNA-seq data. The DEGs harboring rSNPs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We identified 14,796 rSNPs in the promoters of 5132 genes of human PBMCs. We found 4280 rSNPs to associate with both phenotypic traits (GWAS) and expression quantitative trait loci (eQTLs) from GTEx. Between T2DM patients and controls, 3810 rSNPs were detected in the promoters of 1284 DEGs. Based on the protein-protein interaction (PPI) network, we identified 31 upregulated hub genes, including the genes involved in inflammation, obesity, and insulin resistance. The top-ranked 10 enriched KEGG pathways for these hubs included insulin, AMPK, and FoxO signaling pathways. Between metformin responders and non-responders, 367 rSNPs were found in the promoters of 131 DEGs. Genes encoding transcription factors and transcription regulators were the most widely represented group and many were shown to be involved in the T2DM pathogenesis. We have formed a list of human rSNPs that add functional interpretation to the T2DM-association signals identified in GWAS. The results suggest candidate causal regulatory variants for T2DM, with strong enrichment in the pathways related to glucose metabolism, inflammation, and the effects of metformin.
Collapse
Affiliation(s)
- Igor S Damarov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena E Korbolina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena Y Rykova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Tatiana I Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Li X, Kong Z, Cai K, Qi F, Zhu S. Neopterin mediates sleep deprivation-induced microglial activation resulting in neuronal damage by affecting YY1/HDAC1/TOP1/IL-6 signaling. J Adv Res 2024:S2090-1232(24)00301-1. [PMID: 39029901 DOI: 10.1016/j.jare.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
INTRODUCTION Sleep deprivation (SD) is a common disorder in modern society. Hippocampus is an important region of the brain for learning, memory, and emotions. Dysfunction of hippocampus can lead to severe learning and memory disorder, significantly affecting quality of life. SD is accompanied by hippocampal microglia activation and a surge in inflammatory factors, but the precise mechanism remains unclear. Moreover, the ongoing unknown persists regarding how activated microglia in SD lead to neuronal damage. Topoisomerase 1 (TOP1) plays an essential role in the inflammatory process, including the tumor system and viral infection. In this study, we observed a significant elevation in TOP1 levels in the hippocampus of mice subjected to SD. Therefore, we hypothesize that TOP1 may be implicated in SD-induced microglia activation and neuronal damage. OBJECTIVES To investigate the role of TOP1 in SD-induced microglial activation, neuronal damage, and neurobehavioral impairments, and the molecular basis of SD-induced elevated TOP1 levels. METHODS TOP1-specific knockout mice in microglia were used to study the effects of TOP1 on microglial activation and neuronal damage. Transcription factor prediction, RNA interference, ChIP-qPCR, ChIP-seq database analysis, and luciferase reporter assays were performed to explore the molecular mechanisms of YY1 transcriptional activation. Untargeted metabolic profiling was employed to investigate the material basis of YY1 transcriptional activation. RESULTS Knockdown of TOP1 in hippocampal microglia ameliorates SD-induced microglial activation, inflammatory response, and neuronal damage. Mechanistically, TOP1 mediates the release of IL-6 from microglia, which consequently leads to neuronal dysfunction. Moreover, elevated TOP1 due to SD were associated with neopterin, which was attributed to its promotion of elevated levels of H3K27ac in the TOP1 promoter region by disrupting the binding of YY1 and HDAC1. CONCLUSION The present study reveals that TOP1-mediated microglial activation is critical for SD induced hippocampal neuronal damage and behavioral impairments.
Collapse
Affiliation(s)
- Xuan Li
- Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China
| | - Ziyu Kong
- School of Basic Medicine, Wuhan University, Wuhan 430071, China
| | - Ke Cai
- Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China
| | - Fujian Qi
- School of Life Sciences, Lanzhou University, 730030 Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, 730030 Lanzhou, China; The First Affiliated Hospital of Medical College, Zhejiang University, Zhejiang 310000, China.
| |
Collapse
|
9
|
Huang J, Wang X, Li N, Fan W, Li X, Zhou Q, Liu J, Li W, Zhang Z, Liu X, Zeng S, Yang H, Tian M, Yang P, Hou S. YY1 Lactylation Aggravates Autoimmune Uveitis by Enhancing Microglial Functions via Inflammatory Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308031. [PMID: 38493498 PMCID: PMC11109619 DOI: 10.1002/advs.202308031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Activated microglia in the retina are essential for the development of autoimmune uveitis. Yin-Yang 1 (YY1) is an important transcription factor that participates in multiple inflammatory and immune-mediated diseases. Here, an increased YY1 lactylation in retinal microglia within in the experimental autoimmune uveitis (EAU) group is observed. YY1 lactylation contributed to boosting microglial activation and promoting their proliferation and migration abilities. Inhibition of lactylation suppressed microglial activation and attenuated inflammation in EAU. Mechanistically, cleavage under targets & tagmentation (CUT&Tag) analysis revealed that YY1 lactylation promoted microglial activation by regulating the transcription of a set of inflammatory genes, including STAT3, CCL5, IRF1, IDO1, and SEMA4D. In addition, p300 is identified as the writer of YY1 lactylation. Inhibition of p300 decreased YY1 lactylation and suppressed microglial inflammation in vivo and in vitro. Collectively, the results showed that YY1 lactylation promoted microglial dysfunction in autoimmune uveitis by upregulating inflammatory cytokine secretion and boosting cell migration and proliferation. Therapeutic effects can be achieved by targeting the lactate/p300/YY1 lactylation/inflammatory genes axis.
Collapse
Affiliation(s)
- Jiaxing Huang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiaotang Wang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Na Li
- Department of Laboratory Medicine, Beijing Tongren HospitalCapital Medical UniversityBeijing100005China
| | - Wei Fan
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xingran Li
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Qian Zhou
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jiangyi Liu
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Wanqian Li
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Zhi Zhang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiaoyan Liu
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shuhao Zeng
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Hui Yang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Meng Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Peizeng Yang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shengping Hou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| |
Collapse
|
10
|
Liang L, Chen S, Su W, Zhang H, Yu R. Integrated Transcriptomic and Proteomic Study of the Mechanism of Action of the Novel Small-Molecule Positive Allosteric Modulator 1 in Targeting PAC1-R for the Treatment of D-Gal-Induced Aging Mice. Int J Mol Sci 2024; 25:3872. [PMID: 38612681 PMCID: PMC11011505 DOI: 10.3390/ijms25073872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.
Collapse
Affiliation(s)
- Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanlin Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
11
|
Yang X, Chen Y, Pu B, Yuan X, Wang J, Chen C. YY1 Contributes to the Inflammatory Responses of Mycobacterium tuberculosis-Infected Macrophages Through Transcription Activation-Mediated Upregulation TLR4. Mol Biotechnol 2024:10.1007/s12033-024-01093-x. [PMID: 38492118 DOI: 10.1007/s12033-024-01093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 03/18/2024]
Abstract
Tuberculosis (TB) is a chronic respiratory infectious disease and is induced by Mycobacterium tuberculosis (M.tb) infection. Macrophages serve as the cellular home in immunoreaction against M.tb infection, which is tightly regulated through Toll-like receptor 4 (TLR4) expression. Therefore, this study is designed to explore the role and mechanism of TLR4 in mycobacterial injury in human macrophages (THP-1 cells) after M.tb infection. Cell proliferation and apoptosis were assessed using MTT, EdU, and flow cytometry assays. ELISA kits were utilized to assess the levels of Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α). The binding between Yin-Yang-1 (YY1) and TLR4 promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. M.tb infection might repress THP-1 cell proliferation, and induce cell apoptosis and inflammatory response in a multiplicity of infection (MOI)-dependent manner. Moreover, M.tb infection increased the expression of TLR4 in HTP-1 cells in an MOI-dependent way, and its downregulation might overturn M.tb infection-mediated HTP-1 cell damage and inflammatory response. At the molecular level, YY1 was a transcription factor of TLR4 and promoted TLR4 transcription via binding to its promoter region. Besides, YY1 might activate the NF-kB signaling pathway via regulating TLR4. Meanwhile, TLR4 inhibitor BAY11-7082 might overturn the repression effect of TLR4 on M.tb-infected HTP-1 cell damage. YY1-activated TLR4 might aggravate mycobacterial injury in human macrophages after M.tb infection by the NF-kB pathway, providing a promising therapeutic target for TB treatment.
Collapse
Affiliation(s)
- Xing Yang
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China.
| | - Yu Chen
- Department of Health Management Division, Ren Huai People's Hospital, Zunyi, 564500, Guizhou, China
| | - Bingshuang Pu
- Department of Infectious Diseases, Ren Huai People's Hospital, Zunyi, 564500, Guizhou, China
| | - Xuan Yuan
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| | - Jiaojiao Wang
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| | - Chun Chen
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
12
|
Chen B, Xu J, Chen S, Mou T, Wang Y, Wang H, Zhang Z, Ren F, Wang Z, Jin K, Lu J. Dysregulation of striatal dopamine D2/D3 receptor-mediated by hypocretin induces depressive behaviors in rats. J Affect Disord 2023; 325:256-263. [PMID: 36638964 DOI: 10.1016/j.jad.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND The dysregulation of the dopamine system contributes to depressive-like behaviors in rats, and the neurological functions regulated by hypocretin are severely affected in depression. However, whether suvorexant plays a role in alleviating depression by affecting the dopamine system is unclear. METHODS To preliminarily explore the mechanism of suvorexant (10 mg/kg) in the treatment of depression, the mRNA and protein expression of TH, Drd2, Drd3, GluN2A, DAT, and GluN2B in the striatum of rats was quantified by qPCR and western blotting. The plasma hypocretin-1 and dopamine levels and the striatal dopamine levels were determined by ELISA. RESULTS i) Compared to those of the control group, chronic unpredictable mild stress (CUMS) rats showed depressive-like behaviors, which were subsequently reversed by treatment with suvorexant. ii) The mRNA and protein expressions of TH, Drd2, Drd3, GluN2A, and GluN2B in the striatum of CUMS were significantly increased compared with those in the controls, but decreased after suvorexant treatment. iii) Compared with those in the control group, the plasma and striatal dopamine levels of CUMS decreased while plasma hypocretin-1 levels increased, which was reversed after suvorexant treatment. LIMITATIONS i) The suvorexant is a dual hypocretin receptor antagonist; however, the responsible receptor is unclear. ii) We only focused on related factors in the striatum but did not explore other brain regions, nor did we directly explore the relationship among these factors. CONCLUSION Depressive-like behaviors induced by CUMS can be reversed by suvorexant, and the therapeutic effects of suvorexant may be mediated by affecting the dopamine system.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jiangang Xu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999007, Hong Kong
| | - Simiao Chen
- School of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haojun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihan Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Feifan Ren
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Zheng Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|