1
|
Xu X, Nikolin S, Moffa AH, Xu M, Cao TV, Loo CK, Martin DM. Effects of repetitive transcranial magnetic stimulation combined with cognitive training for improving response inhibition: A proof-of-concept, single-blind randomised controlled study. Behav Brain Res 2025; 480:115372. [PMID: 39643046 DOI: 10.1016/j.bbr.2024.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Impaired response inhibition is a common characteristic of various psychiatric disorders. Cognitive training (CT) can improve cognitive function, but the benefits may be limited. Repetitive transcranial magnetic stimulation (rTMS) is a promising tool to enhance neuroplasticity, and thereby augment the effects of CT. We aimed to investigate the augmentation effects of rTMS on CT for response inhibition in healthy participants. METHODS Sixty healthy participants were randomly assigned to two experimental groups: one with prolonged intermittent theta burst stimulation (iTBS) + CT and the other with sham iTBS + CT over four experimental sessions. Prolonged iTBS (1800 pulses) was used to stimulate the right inferior frontal cortex (rIFC) and pre-supplementary motor area (pre-SMA) in a counterbalanced order. Participants completed a Stop Signal training task following iTBS over one brain region, followed by the Go/No-Go training task after iTBS over the other brain region. The Stroop task with concomitant electroencephalography was conducted before and immediately after the intervention. RESULTS There were no significant differences between groups in behavioural outcomes on the Stop Signal task, Go/No-Go task, Stroop task or Behavior Rating Inventory of Executive Functioning for Adults. Similarly, analysis of event-related potentials (ERPs) from the Stroop task (N200 and N400) and exploratory cluster-based permutation analysis did not reveal any significant differences between groups. Subgroup analyses revealed that individuals with higher baseline impulsivity exhibited better learning effects in the active group. CONCLUSIONS This first proof of concept study did not find evidence that four sessions of active rTMS + CT could induce cognitive or neurophysiological effects on response inhibition in healthy participants. However, subgroup analyses suggests that rTMS combined with CT could be useful in improving response inhibition in individuals with high impulsivity. It is recommended that future proof of concept studies examine its potential in this clinical population.
Collapse
Affiliation(s)
- Xiaomin Xu
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Adriano H Moffa
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Mei Xu
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Thanh Vinh Cao
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Colleen K Loo
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Donel M Martin
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia.
| |
Collapse
|
2
|
Prange S, Thobois S. Imaging of impulse control disorders in Parkinson's disease. Rev Neurol (Paris) 2024; 180:1078-1086. [PMID: 39341756 DOI: 10.1016/j.neurol.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Impulse control disorders (ICD) are frequent and cumbersome behavioral disorders in patients with Parkinson's disease (PD). Understanding their pathophysiological underpinnings is crucial. Molecular imaging using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) clearly indicates preexisting vulnerability and abnormal sensitization of the pre- and postsynaptic dopaminergic system. Functional magnetic resonance imaging (fMRI) studies reveal abnormal connectivity within the reward system involving the ventral striatum and orbitofrontal cortex. These alterations pinpoint the dysfunction of reinforcement learning in ICD, which is biased toward the overvaluation of reward and underestimation of risk, and the deficit in inhibitory control mechanisms related to abnormal connectivity within and between the limbic and the associative and motor networks.
Collapse
Affiliation(s)
- S Prange
- Hospices Civils de Lyon, Pierre-Wertheimer Neurological Hospital, Department of Neurology C, Expert Parkinson Center NS-PARK/FCRIN, Bron, France; CRNL Centre de Recherche en Neurosciences de Lyon, PATHPARK, INSERM U1028 CNRS UMR 5292, Bron, France; Université Lyon, Université Claude-Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles-Mérieux, Oullins, France.
| | - S Thobois
- Hospices Civils de Lyon, Pierre-Wertheimer Neurological Hospital, Department of Neurology C, Expert Parkinson Center NS-PARK/FCRIN, Bron, France; CRNL Centre de Recherche en Neurosciences de Lyon, PATHPARK, INSERM U1028 CNRS UMR 5292, Bron, France; Université Lyon, Université Claude-Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles-Mérieux, Oullins, France
| |
Collapse
|
3
|
Li H, Yang Y, Yang L, Xie A. Clinical management model for impulse control disorders in Parkinson's disease. CNS Spectr 2024:1-10. [PMID: 39468854 DOI: 10.1017/s1092852924000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Over the last decade, we have gained a better understanding of impulse control disorder in Parkinson's disease (PD-ICD), a medication complication in PD. Researchers were aware of its complexity and took efforts to learn more about its diagnostic and treatment possibilities. Nevertheless, clinical management for it is currently neglected. We conducted a narrative overview of literature published from 2012 to October 2023 on various aspects of clinical management for PD-ICD. A potential "susceptibility-catalytic-stress" model in the development of PD-ICD was proposed and a profile encoding predictors for PD-ICD was created. Based on these predictors, some methods for prediction were recently developed for better prediction, such as the polymorphic dopamine genetic risk score and the clinic-genetic ICD-risk score. A variety of treatment options, including dose reduction of dopamine receptor agonists (DAs), DAs removal, DAs switch, and add-on therapy, are investigated with inconsistent reports. Based on current findings, we developed a clinical management model prototype centered on prevention, consisting of prediction, prevention, follow-up and monitoring, therapy, and recurrence prevention, for clinical reference, and further proposed 4 key clinical management principles, including standardization, prediction centered, persistence, and whole course.
Collapse
Affiliation(s)
- Han Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Obeso I, Loayza FR, González-Redondo R, Villagra F, Luis E, Jahanshahi M, Obeso JA, Pastor MA. The causal role of the subthalamic nucleus in the inhibitory network. Ann N Y Acad Sci 2024; 1538:117-128. [PMID: 39116019 DOI: 10.1111/nyas.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The neural network mediating successful response inhibition mainly includes right hemisphere activation of the pre-supplementary motor area, inferior frontal gyrus (IFG), subthalamic nucleus (STN), and caudate nucleus. However, the causal role of these regions in the inhibitory network is undefined. Five patients with Parkinson's disease were assessed prior to and after therapeutic thermal ablation of the right STN in two separate functional magnetic resonance imaging (fMRI) sessions while performing a stop-signal task. Initiation times were faster but motor inhibition with the left hand (contralateral to the lesion) was significantly impaired as evident in prolonged stop-signal reaction times. Reduced inhibition after right subthalamotomy was associated (during successful inhibition) with the recruitment of basal ganglia regions outside the established inhibitory network. They included the putamen and caudate together with the anterior cingulate cortex and IFG of the left hemisphere. Subsequent network connectivity analysis (with the seed over the nonlesioned left STN) revealed a new inhibitory network after right subthalamotomies. Our results highlight the causal role of the right STN in the neural network for motor inhibition and the possible basal ganglia mechanisms for compensation upon losing a key node of the inhibition network.
Collapse
Affiliation(s)
| | - Francis R Loayza
- Neuroimaging and BioEngineering Laboratory, Faculty of Mechanical Engineering, Polytechnic University (ESPOL), Guayaquil, Ecuador
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Federico Villagra
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elkin Luis
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Marjan Jahanshahi
- Cognitive-Motor Neuroscience Group, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology & The National Hospital for Neurology and Neurosurgery, London, UK
| | - José A Obeso
- CIBERNED, Instituto Carlos III, Madrid, Spain
- HM-CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain
| | - Maria A Pastor
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Maggi G, Loayza F, Vitale C, Santangelo G, Obeso I. Anatomical correlates of apathy and impulsivity co-occurrence in early Parkinson's disease. J Neurol 2024; 271:2798-2809. [PMID: 38416170 PMCID: PMC11055726 DOI: 10.1007/s00415-024-12233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Although apathy and impulse control disorders (ICDs) are considered to represent opposite extremes of a continuum of motivated behavior (i.e., hypo- and hyperdopaminergic behaviors), they may also co-occur in Parkinson's disease (PD). OBJECTIVES We aimed to explore the co-occurrence of ICDs and apathy and its neural correlates analyzing gray matter (GM) changes in early untreated PD patients. Moreover, we aimed to investigate the possible longitudinal relationship between ICDs and apathy and their putative impact on cognition during the first five years of PD. METHODS We used the Parkinson's Progression Markers Initiative (PPMI) database to identify the co-occurrence of apathy and ICDs in 423 early drug-naïve PD patients at baseline and at 5-year follow-up. Baseline MRI volumes and gray matter changes were analyzed between groups using voxel-based morphometry. Multi-level models assessed the longitudinal relationship (across five years) between apathy and ICDs and cognitive functioning. RESULTS At baseline, co-occurrence of apathy and ICDs was observed in 23 patients (5.4%). This finding was related to anatomical GM reduction along the cortical regions involved in the limbic circuit and cognitive control systems. Longitudinal analyses indicated that apathy and ICDs were related to each other as well as to the combined use of levodopa and dopamine agonists. Worse apathetic and ICDs states were associated with poorer executive functions. CONCLUSIONS Apathy and ICDs are joint non-exclusive neuropsychiatric disorders also in the early stages of PD and their co-occurrence was associated with GM decrease in several cortical regions of the limbic circuit and cognitive control systems.
Collapse
Affiliation(s)
- Gianpaolo Maggi
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francis Loayza
- Neurosciences and Bioengineering Laboratory, Faculty of Mechanical and Production Sciences Engineering, Polytechnic University (ESPOL), Guayaquil, Ecuador
| | - Carmine Vitale
- Department of Medical, Motor Sciences and Wellness, University "Parthenope", Naples, Italy
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Ignacio Obeso
- HM-CINAC, Centro Integral de Neurociencias AC. HM Hospitales, Av. Carlos V, 70, Móstoles, 28938, Madrid, Spain.
- CINC, CSIC, Madrid, Spain.
| |
Collapse
|
6
|
Gan C, Zhang H, Sun H, Cao X, Wang L, Zhang K, Yuan Y. Aberrant brain topological organization and granger causality connectivity in Parkinson's disease with impulse control disorders. Front Aging Neurosci 2024; 16:1364402. [PMID: 38725535 PMCID: PMC11079187 DOI: 10.3389/fnagi.2024.1364402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Impulse control disorders (ICDs) refer to the common neuropsychiatric complication of Parkinson's disease (PD). The white matter (WM) topological organization and its impact on brain networks remain to be established. Methods A total of 17 PD patients with ICD (PD-ICD), 17 without ICD (PD-NICD), and 18 healthy controls (HCs) were recruited. Graph theoretic analyses and Granger causality analyses were combined to investigate WM topological organization and the directional connection patterns of key regions. Results Compared to PD-NICD, ICD patients showed abnormal global properties, including decreased shortest path length (Lp) and increased global efficiency (Eg). Locally, the ICD group manifested abnormal nodal topological parameters predominantly in the left middle cingulate gyrus (MCG) and left superior cerebellum. Decreased directional connectivity from the left MCG to the right medial superior frontal gyrus was observed in the PD-ICD group. ICD severity was significantly correlated with Lp and Eg. Discussion Our findings reflected that ICD patients had excessively optimized WM topological organization, abnormally strengthened nodal structure connections within the reward network, and aberrant causal connectivity in specific cortical- limbic circuits. We hypothesized that the aberrant reward and motor inhibition circuit could play a crucial role in the emergence of ICDs.
Collapse
Affiliation(s)
- Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|