1
|
Yuan X, Duan X, Li Z, Yao B, Enhejirigala, Song W, Kong Y, Wang Y, Zhang F, Liang L, Zhu S, Zhang M, Zhang C, Huang S, Fu X. Collagen triple helix repeat containing-1 promotes functional recovery of sweat glands by inducing adjacent microvascular network reconstruction in vivo. BURNS & TRAUMA 2022; 10:tkac035. [PMID: 35937591 PMCID: PMC9346565 DOI: 10.1093/burnst/tkac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022]
Abstract
Background Sweat glands (SGs) have low regenerative potential after severe burns or trauma and their regeneration or functional recovery still faces many obstacles. In practice, restoring SG function requires not only the structural integrity of the gland itself, but also its neighboring tissues, especially blood vessels. Collagen triple helix repeat containing-1 (CTHRC1) was first identified in vascular repair, and increasing reports showed a close correlation between cutaneous appendage specification, patterning and regeneration. The purpose of the present study was to clarify the role of CTHRC1 in SGs and their adjacent microvessels and find therapeutic strategies to restore SG function. Methods The SGs and their adjacent microvascular network of Cthrc1−/− mice were first investigated using sweat test, laser Doppler imaging, tissue clearing technique and transcriptome analysis. The effects of CTHRC1 on dermal microvascular endothelial cells (DMECs) were further explored with cell proliferation, DiI-labeled acetylated low-density lipoprotein uptake, tube formation and intercellular junction establishment assays. The effects of CTHRC1 on SG function restoration were finally confirmed by replenishing the protein into the paws of Cthrc1−/− mice. Results CTHRC1 is a key regulator of SG function in mice. At the tissue level, Cthrc1 deletion resulted in the disorder and reduction of the microvascular network around SGs. At the molecular level, the knockout of Cthrc1 reduced the expression of vascular development genes and functional proteins in the dermal tissues. Furthermore, CTHRC1 administration considerably enhanced SG function by inducing adjacent vascular network reconstruction. Conclusions CTHRC1 promotes the development, morphogenesis and function execution of SGs and their neighboring vasculature. Our study provides a novel target for the restoration or regeneration of SG function in vivo.
Collapse
Affiliation(s)
- Xingyu Yuan
- School of Medicine , Nankai University, 94 Wei Jin Road, Tianjin 300071, PR China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
| | - Xianlan Duan
- School of Medicine , Nankai University, 94 Wei Jin Road, Tianjin 300071, PR China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Chinese PLA General Hospital and PLA Medical College , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Chinese PLA General Hospital and PLA Medical College , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Academy of Medical Engineering and Translational Medicine, Tianjin University , 92 Weijin Road, Tianjin, 300072, PR China
| | - Enhejirigala
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- College of Graduate, Tianjin Medical University , Tianjin 300070, PR China
- Institute of Basic Medical Research, Inner Mongolia Medical University , Hohhot 010110, Inner Mongolia, PR China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Chinese PLA General Hospital and PLA Medical College , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Chinese PLA General Hospital and PLA Medical College , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
| | - Yuzhen Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Chinese PLA General Hospital and PLA Medical College , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command , Datong 037000, Shanxi, PR China
| | - Fanliang Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Chinese PLA General Hospital and PLA Medical College , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
| | - Liting Liang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
| | - Shijun Zhu
- School of Medicine , Nankai University, 94 Wei Jin Road, Tianjin 300071, PR China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
| | - Mengde Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Chinese PLA General Hospital and PLA Medical College , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
| | - Chao Zhang
- School of Medicine , Nankai University, 94 Wei Jin Road, Tianjin 300071, PR China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
| | - Xiaobing Fu
- School of Medicine , Nankai University, 94 Wei Jin Road, Tianjin 300071, PR China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital , 28 Fu Xing Road, Beijing 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Chinese PLA General Hospital and PLA Medical College , Repair and Regeneration, , 51 Fu Cheng Road, Beijing 100048, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051 , Beijing 100048, PR China
| |
Collapse
|