1
|
Lancaster MS, Graham BH. Succinyl-CoA Synthetase Dysfunction as a Mechanism of Mitochondrial Encephalomyopathy: More than Just an Oxidative Energy Deficit. Int J Mol Sci 2023; 24:10725. [PMID: 37445899 PMCID: PMC10342173 DOI: 10.3390/ijms241310725] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Biallelic pathogenic variants in subunits of succinyl-CoA synthetase (SCS), a tricarboxylic acid (TCA) cycle enzyme, are associated with mitochondrial encephalomyopathy in humans. SCS catalyzes the interconversion of succinyl-CoA to succinate, coupled to substrate-level phosphorylation of either ADP or GDP, within the TCA cycle. SCS-deficient encephalomyopathy typically presents in infancy and early childhood, with many patients succumbing to the disease during childhood. Common symptoms include abnormal brain MRI, basal ganglia lesions and cerebral atrophy, severe hypotonia, dystonia, progressive psychomotor regression, and growth deficits. Although subunits of SCS were first identified as causal genes for progressive metabolic encephalomyopathy in the early 2000s, recent investigations are now beginning to unravel the pathomechanisms underlying this metabolic disorder. This article reviews the current understanding of SCS function within and outside the TCA cycle as it relates to the complex and multifactorial mechanisms underlying SCS-related mitochondrial encephalomyopathy.
Collapse
Affiliation(s)
| | - Brett H. Graham
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut St., Room IB257, Indianapolis, IN 46202, USA;
| |
Collapse
|
2
|
Couser NL, Marchuk DS, Smith LD, Arreola A, Kaiser-Rogers KA, Muenzer J, Pandya A, Gucsavas-Calikoglu M, Powell CM. Co-occurring Down syndrome and SUCLA2-related mitochondrial depletion syndrome. Am J Med Genet A 2017; 173:2720-2724. [PMID: 28749033 DOI: 10.1002/ajmg.a.38351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 01/23/2023]
Abstract
Mitochondrial DNA depletion syndrome 5 (MIM 612073) is a rare autosomal recessive disorder caused by homozygous or compound heterozygous pathogenic variants in the beta subunit of the succinate-CoA ligase gene located within the 13q14 band. We describe two siblings of Hispanic descent with SUCLA2-related mitochondrial depletion syndrome (encephalomyopathic form with methylmalonic aciduria); the older sibling is additionally affected with trisomy 21. SUCLA2 sequencing identified homozygous p.Arg284Cys pathogenic variants in both patients. This mutation has previously been identified in four individuals of Italian and Caucasian descent. The older sibling with concomitant disease has a more severe phenotype than what is typically described in patients with either SUCLA2-related mitochondrial depletion syndrome or Down syndrome alone. The younger sibling, who has a normal female chromosome complement, is significantly less affected compared to her brother. While the clinical and molecular findings have been reported in about 50 patients affected with a deficiency of succinate-CoA ligase caused by pathogenic variants in SUCLA2, this report describes the first known individual affected with both a mitochondrial depletion syndrome and trisomy 21.
Collapse
Affiliation(s)
- Natario L Couser
- Department of Pediatrics, Division of Genetics and Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel S Marchuk
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Laurie D Smith
- Department of Pediatrics, Division of Genetics and Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexandra Arreola
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen A Kaiser-Rogers
- Department of Pediatrics, Division of Genetics and Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph Muenzer
- Department of Pediatrics, Division of Genetics and Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Arti Pandya
- Department of Pediatrics, Division of Genetics and Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Muge Gucsavas-Calikoglu
- Department of Pediatrics, Division of Genetics and Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cynthia M Powell
- Department of Pediatrics, Division of Genetics and Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochem J 2016; 473:3463-3485. [PMID: 27496549 PMCID: PMC5126846 DOI: 10.1042/bcj20160594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
Succinate-CoA ligase (SUCL) is a heterodimer enzyme composed of Suclg1 α-subunit and a substrate-specific Sucla2 or Suclg2 β-subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with or without methylmalonyl aciduria, in addition to resulting in mitochondrial DNA depletion. We generated mice lacking either one Sucla2 or Suclg2 allele. Sucla2 heterozygote mice exhibited tissue- and age-dependent decreases in Sucla2 expression associated with decreases in ATP-forming activity, but rebound increases in cardiac Suclg2 expression and GTP-forming activity. Bioenergetic parameters including substrate-level phosphorylation (SLP) were not different between wild-type and Sucla2 heterozygote mice unless a submaximal pharmacological inhibition of SUCL was concomitantly present. mtDNA contents were moderately decreased, but blood carnitine esters were significantly elevated. Suclg2 heterozygote mice exhibited decreases in Suclg2 expression but no rebound increases in Sucla2 expression or changes in bioenergetic parameters. Surprisingly, deletion of one Suclg2 allele in Sucla2 heterozygote mice still led to a rebound but protracted increase in Suclg2 expression, yielding double heterozygote mice with no alterations in GTP-forming activity or SLP, but more pronounced changes in mtDNA content and blood carnitine esters, and an increase in succinate dehydrogenase activity. We conclude that a partial reduction in Sucla2 elicits rebound increases in Suclg2 expression, which is sufficiently dominant to overcome even a concomitant deletion of one Suclg2 allele, pleiotropically affecting metabolic pathways associated with SUCL. These results as well as the availability of the transgenic mouse colonies will be of value in understanding SUCL deficiency.
Collapse
|