1
|
Hayashi S, Seki-Omura R, Yamada S, Kamata T, Sato Y, Oe S, Koike T, Nakano Y, Iwashita H, Hirahara Y, Tanaka S, Sekijima T, Ito T, Yasukochi Y, Higasa K, Kitada M. OLIG2 translocates to chromosomes during mitosis via a temperature downshift: A novel neural cold response of mitotic bookmarking. Gene 2024; 891:147829. [PMID: 37748631 DOI: 10.1016/j.gene.2023.147829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Shinichi Hayashi
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan.
| | - Ryohei Seki-Omura
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Shintaro Yamada
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Taito Kamata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan; Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan
| | - Yuki Sato
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Souichi Oe
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Taro Koike
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yousuke Nakano
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Hikaru Iwashita
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yukie Hirahara
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan; Faculty of Nursing, Kansai Medical University, Shinmachi 2-2-2, Hirakata, Osaka, Japan
| | - Susumu Tanaka
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan; Department of Anatomy and Physiology, Faculty of Nursing and Nutrition, University of Nagasaki, Manabino 1-1-1, Nagasaki, Japan
| | - Tsuneo Sekijima
- Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan
| | - Takeshi Ito
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yoshiki Yasukochi
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Masaaki Kitada
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan.
| |
Collapse
|
2
|
Hajinejad M, Ebrahimzadeh MH, Ebrahimzadeh-Bideskan A, Rajabian A, Gorji A, Sahab Negah S. Exosomes and Nano-SDF Scaffold as a Cell-Free-Based Treatment Strategy Improve Traumatic Brain Injury Mechanisms by Decreasing Oxidative Stress, Neuroinflammation, and Increasing Neurogenesis. Stem Cell Rev Rep 2023; 19:1001-1018. [PMID: 36652144 DOI: 10.1007/s12015-022-10483-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 01/19/2023]
Abstract
Traumatic brain injury (TBI) causes a variety of complex pathological changes in brain parenchymal tissue by increasing neuroinflammatory and apoptosis responses. Currently, there is no treatment to resolve the consequences related to TBI. Recently, an extensive literature has grown up around the theme of bystander effects of stem cells, a mechanism of stem cells without the need for cell transplantation, which is called cell-free therapy. The purpose of this investigation was to determine the efficacy of a cell-free-based therapy strategy using exosomes derived from human neural stem cells (hNSCs) and a novel nano-scaffold in rats subjected to TBI. In this study, a series of in vitro and in vivo experiments from behavior tests to gene expression was performed to define the effect of exosomes in combination with a three-dimensional (3D) nano-scaffold containing a bio-motif of SDF1α (Nano-SDF). Application of exosomes with Nano-SDF significantly decreased oxidative stress in serum and brain samples. Moreover, treatment with exosomes and Nano-SDF significantly reduced the expression of Toll-like receptor 4 and its downstream signaling pathway, including NF-kβ and interleukin-1β. We also found that the cell-free-based therapy strategy could decrease reactive gliosis at the injury site. Interestingly, we showed that exosomes with Nano-SDF increased neurogenesis in the sub-ventricular zone of the lateral ventricle, indicating a bio-bridge mechanism. To sum up, the most obvious finding to emerge from this study is that a cell-free-based therapy strategy can be an effective option for future practice in the course of TBI.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, 48149, Munster, Germany
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd, Mashhad, Iran.
| |
Collapse
|
3
|
Song C, Chen X, Ma J, Buhe H, Liu Y, Saiyin H, Ma L. Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids. J Tissue Eng 2023; 14:20417314221147113. [PMID: 36636100 PMCID: PMC9829995 DOI: 10.1177/20417314221147113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
Pancreatic cancer (PC) is a fatal malignancy in the human abdominal cavity that prefers to invade the surrounding nerve/nerve plexus and even the spine, causing devastating and unbearable pain. The limitation of available in vitro models restricts revealing the molecular mechanism of pain and screening pain-relieving strategies to improve the quality of life of end-stage PC patients. Here, we report a PC nerve invasion model that merged human brain organoids (hBrO) with mouse PC organoids (mPCO). After merging hBrOs with mPCOs, we monitored the structural crosstalk, growth patterns, and mutual interaction dynamics of hBrO with mPCOs for 7 days. After 7 days, we also analyzed the pathophysiological statuses, including proliferation, apoptosis and inflammation. The results showed that mPCOs tend to approximate and intrude into the hBrOs, merge entirely into the hBrOs, and induce the retraction/shrinking of neuronal projections that protrude from the margin of the hBrOs. The approximating of mPCOs to hBrOs accelerated the proliferation of neuronal progenitor cells, intensified the apoptosis of neurons in the hBrOs, and increased the expression of inflammatory molecules in hBrOs, including NLRP3, IL-8, and IL-1β. Our system pathophysiologically replicated the nerve invasions in mouse GEMM (genetically engineered mouse model) primary and human PCs and might have the potential to be applied to reveal the molecular mechanism of nerve invasion and screen therapeutic strategies in PCs.
Collapse
Affiliation(s)
- Chenyun Song
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Xinyu Chen
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Jixin Ma
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Hada Buhe
- The School of Pharmacy, Fujian Medical
University, Fuzhou, People’s Republic of China
| | - Yang Liu
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Hexige Saiyin
- State Key Laboratory of Genetic
Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic
of China,Hexige Saiyin, State Key Laboratory of
Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road,
Shanghai 200438, People’s Republic of China.
| | - Lixiang Ma
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| |
Collapse
|
4
|
Liu H, Wei T, Huang Q, Liu W, Yang Y, Jin Y, Wu D, Yuan K, Zhang P. The roles, mechanism, and mobilization strategy of endogenous neural stem cells in brain injury. Front Aging Neurosci 2022; 14:924262. [PMID: 36062152 PMCID: PMC9428262 DOI: 10.3389/fnagi.2022.924262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Brain injury poses a heavy disease burden in the world, resulting in chronic deficits. Therapies for brain injuries have been focused on pharmacologic, small molecule, endocrine and cell-based therapies. Endogenous neural stem cells (eNSCs) are a group of stem cells which can be activated in vivo by damage, neurotrophic factors, physical factor stimulation, and physical exercise. The activated eNSCs can proliferate, migrate and differentiate into neuron, oligodendrocyte and astrocyte, and play an important role in brain injury repair and neural plasticity. The roles of eNSCs in the repair of brain injury include but are not limited to ameliorating cognitive function, improving learning and memory function, and promoting functional gait behaviors. The activation and mobilization of eNSCs is important to the repair of injured brain. In this review we describe the current knowledge of the common character of brain injury, the roles and mechanism of eNSCs in brain injury. And then we discuss the current mobilization strategy of eNSCs following brain injury. We hope that a comprehensive awareness of the roles and mobilization strategy of eNSCs in the repair of cerebral ischemia may help to find some new therapeutic targets and strategy for treatment of stroke.
Collapse
Affiliation(s)
- Haijing Liu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tao Wei
- Library, Kunming Medical University, Kunming, China
- School of Continuing Education, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qin Huang
- Department of Teaching Affairs and Administration, Kunming Medical University, Kunming, China
| | - Wei Liu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yaopeng Yang
- Department of Pulmonary and Critical Care Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Kai Yuan
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
- *Correspondence: Kai Yuan,
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
- Pengyue Zhang,
| |
Collapse
|
5
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Ikeda-Yorifuji I, Tsujioka H, Sakata Y, Yamashita T. Single-nucleus RNA sequencing identified cells with ependymal cell-like features enriched in neonatal mice after spinal cord injury. Neurosci Res 2022; 181:22-38. [PMID: 35452717 DOI: 10.1016/j.neures.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
The adult mammalian central nervous system has limited regenerative ability, and spinal cord injury (SCI) often causes lifelong motor disability. While regeneration is limited in adults, injured spinal cord tissue can be regenerated and neural function can be almost completely restored in neonates. However, difference of cellular composition in lesion has not been well characterized. To gain insight into the age-dependent cellular reaction after SCI, we performed single-nucleus RNA sequencing, analyzing 4,076 nuclei from sham and injured spinal cords from adult and neonatal mice. Clustering analysis identified 18 cell populations. We identified previously undescribed cells with ependymal cell-like gene expression profile, the number of which was increased in neonates after SCI. Histological analysis revealed that these cells line the central canal under physiological conditions in both adults and neonates. We confirmed that they were enriched in the lesion only in neonates. We further showed that these cells were positive for the cellular markers of ependymal cells, astrocytes and radial glial cells. This study provides a deeper understanding of neonate-specific cellular responses after SCI, which may determine regenerative capacity.
Collapse
Affiliation(s)
- Iyo Ikeda-Yorifuji
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Tsujioka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
7
|
Lu S, Li K, Yang Y, Wang Q, Yu Y, Wang Z, Luan Z. Optimization of an Intranasal Route for the Delivery of Human Neural Stem Cells to Treat a Neonatal Hypoxic-Ischemic Brain Injury Rat Model. Neuropsychiatr Dis Treat 2022; 18:413-426. [PMID: 35495583 PMCID: PMC9047963 DOI: 10.2147/ndt.s350586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Stem cell administration via the intranasal route has shown promise as a new therapy for hypoxic-ischemic encephalopathy (HIE). In this study, we aimed to improve the intranasal delivery of stem cells to the brain. METHODS Human neural stem cells (hNSCs) were identified using immunofluorescence, morphological, and flow cytometry assays before transplantation, and cell migration capacity was examined using the transwell assay. Cerebral hypoxia-ischemia (HI) was induced in 7-day-old rats, followed by the intranasal transplantation of CM-Dil-labeled hNSCs. We examined various experimental conditions, including preconditioning hNSCs with hypoxia, catheter method, multiple low-dose transplantation, head position, cell appropriate concentration, and volume. Rats were sacrificed 1 or 3 days after the final intranasal administration, and parts of the nasal tissue and whole brain sections were analyzed under a fluorescence microscope. RESULTS The isolated hNSCs met the characteristics of neural stem cells. Hypoxia (5% O2, 24 h) enhanced the surface expression of CXC chemokine receptor 4 (CXCR4) (9.21 ± 1.9% ~ 24.76 ± 2.24%, P < 0.01) on hNSCs and improved migration (toward stromal cell-derived factor 1 [SDF-1], 0.54 ± 0.11% ~ 8.65 ± 1.76%, P < 0.001; toward fetal bovine serum, 8.36 ± 0.81% ~ 21.74 ± 0.85%, P < 0.0001). Further improvement increased the number of surviving cell distribution with increased uniformity on the olfactory epithelium and allowed the cells to stay in the nasal cavity for at least 72 h, but they did not survive for longer than 48 h. Optimization of pre-transplantation conditions augmented the success rate of intranasally delivered cells to the brain (0-41.6%). We also tentatively identified that hNSCs crossed the olfactory epithelium into the tissue space below the lamina propria, with cerebrospinal fluid entering the cribriform plate into the subarachnoid space, and then migrated toward injured areas along the brain blood vessels. CONCLUSION This study offers some helpful advice and reference for addressing the problem of repeatability in the intranasal delivery of stem cells.
Collapse
Affiliation(s)
- Siliang Lu
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ke Li
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yinxiang Yang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Qian Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yu Yu
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zhaoyan Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zuo Luan
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
8
|
Zhang P, Ilagan R, Bai Y, Zhang X, Deng Y, Ding Y. Editorial: Plasticity and Reconstruction of Neural Network in Brain Injury. Front Cell Neurosci 2021; 15:710499. [PMID: 34239420 PMCID: PMC8258089 DOI: 10.3389/fncel.2021.710499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Pengyue Zhang
- College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Roxanne Ilagan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunping Deng
- University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
9
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|
10
|
Fei W, Liu M, Zhang Y, Cao S, Wang X, Xie B, Wang J. Identification of key pathways and hub genes in the myogenic differentiation of pluripotent stem cell: a bioinformatics and experimental study. J Orthop Surg Res 2021; 16:4. [PMID: 33397419 PMCID: PMC7784349 DOI: 10.1186/s13018-020-01979-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background The regeneration of muscle cells from stem cells is an intricate process, and various genes are included in the process such as myoD, mf5, mf6, etc. The key genes and pathways in the differentiating stages are various. Therefore, the differential expression of key genes after 4 weeks of differentiation were investigated in our study. Method Three published gene expression profiles, GSE131125, GSE148994, and GSE149055, about the comparisons of pluripotent stem cells to differentiated cells after 4 weeks were obtained from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (DEGs) were obtained for further analysis such as protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA analysis. After hub genes and key pathways were obtained, we manipulated in vitro cell research for substantiation such as immunohistochemical staining and semi-quantitative analysis and quantitative real-time PCR. Results A total of 824 DEGs including 350 upregulated genes and 474 downregulated genes were identified in the three GSEs. Nineteen hub genes were identified from the PPI network. The GO and KEGG pathway analyses confirmed that myogenic differentiation at 4 weeks was strongly associated with pathway in cancer, PI3K pathway, actin cytoskeleton regulation and metabolic pathway, biosynthesis of antibodies, and cell cycle. GSEA analysis indicated the differentiated cells were enriched in muscle cell development and myogenesis. Meanwhile, the core genes in each pathway were identified from the GSEA analysis. The in vitro cell research revealed that actin cytoskeleton and myoD were upregulated after 4-week differentiation. Conclusions The research revealed the potential hub genes and key pathways after 4-week differentiation of stem cells which contribute to further study about the molecular mechanism of myogenesis regeneration, paving a way for more accurate treatment for muscle dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-01979-x.
Collapse
Affiliation(s)
- Wenyong Fei
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou, 225001, China
| | - Mingsheng Liu
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Yao Zhang
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Shichao Cao
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Xuanqi Wang
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Bin Xie
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Jingcheng Wang
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou, 225001, China.
| |
Collapse
|
11
|
Uchiyama A. A window of hope: Cell therapy using neural stem cells for neonatal brain injury. Pediatr Int 2021; 63:3-4. [PMID: 33486872 DOI: 10.1111/ped.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Uchiyama
- Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|