1
|
Yarmohammadi F, Karimi G. Serum and glucocorticoid-regulated kinase 1 (SGK1) as an emerging therapeutic target for cardiac diseases. Pharmacol Res 2024; 208:107369. [PMID: 39209082 DOI: 10.1016/j.phrs.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Cardiac diseases encompass a wide range of conditions that affect the structure and function of the heart. These conditions are a leading cause of morbidity and mortality worldwide. The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a serine/threonine kinase that plays a significant role in various cellular processes, including cell survival and stress response. Alterations in SGK1 activity can have significant impacts on health and disease. Multiple research findings have indicated that SGK1 is associated with heart disease due to its involvement in cardiac hypertrophy and fibrosis. This article reviews different signaling pathways associated with SGK1 activity in various heart conditions, including the SGK1/NF-κB and PI3K/SGK1 pathways.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Mozaffari MS. Serum Glucocorticoid-Regulated Kinase-1 in Ischemia-Reperfusion Injury: Blessing or Curse. J Pharmacol Exp Ther 2023; 387:277-287. [PMID: 37770199 DOI: 10.1124/jpet.123.001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
The family of serum-glucocorticoid-regulated kinase (SGK) consists of three paralogs, SGK-1, SGK-2, and SGK-3, with SGK-1 being the better studied. Indeed, recognition of the role of SGK-1 in regulation of cell survival and proliferation has led to introduction of a number of small-molecule inhibitors for some types of cancer. In addition, SGK-1 regulates major physiologic effects, such as renal solute transport, and contributes to the pathogenesis of non-neoplastic conditions involving major organs including the heart and the kidney. These observations raise the prospect for therapeutic modulation of SGK-1 to reduce the burden of such diseases as myocardial infarction and acute kidney injury. Following a brief description of the structure and function of SGK family of proteins, the present review is primarily focused on our current understanding of the role of SGK-1 in pathologies related to ischemia-reperfusion injury involving several organs (e.g., heart, kidney). The essential role of the mitochondrial permeability transition pore in cell death coupled with the pro-survival function of SGK-1 raise the prospect that its therapeutic modulation could beneficially impact conditions associated with ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: Since the discovery of serum glucocorticoid-regulated kinase (SGK)-1, extensive research has unraveled its role in cancer biology and, thus, its therapeutic targeting. Increasingly, it is also becoming clear that SGK-1 is a major determinant of the outcome of ischemia-reperfusion injury to various organs. Thus, evaluation of existing information should help identify gaps in our current knowledge and also determine whether and how its therapeutic modulation could impact the outcome of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
3
|
Yang X, Sha X, Cao Y, Wang W, Shi J. Cx43 overexpression reduce the incidence of obstructive sleep apnea associated atrial fibrillation via the CaMKⅡγ/HIF-1 axis. Biochem Biophys Res Commun 2023; 659:62-71. [PMID: 37037067 DOI: 10.1016/j.bbrc.2023.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Previous studies by our group have demonstrated chronic intermittent hypoxia (CIH) can decrease connexin 43 (Cx43) protein expression and thus increase atrial fibrillation (AF) inducibility. Cardiac sympathetic denervation (CSD) can reduce AF and increase Cx43 expression, however, the underlying molecular mechanisms and signaling pathways are still unclear. METHODS AND RESULTS An obstructive sleep apnea (OSA) rat model in vivo experiments and CIH H9c2 cells model in vitro experiments were used to figure out the roles and underlying mechanisms of Cx43 on OSA-associated AF. In this study, we examined the expression of Cx43, CaMKⅡγ, Bax, Caspase 3, HIF-1 Bcl-2, Tunel, and CPB/p300, to discover the association between proteins and the mechanism of regulatory changes. The downstream proteins of Cx43 were calculated by gene sequencing and data analysis. We found Cx43 expression was significantly downregulated after CIH exposure in rat and H9c2 cells. Active caspase-3 and Bax at CIH+8 h group are high, but decreased at OE+8 h group. The Bcl-2 expression was higher in the N and OE+8 h group than CIH+8 h group. TUNEL-positive cells from the CIH+8 h group was markedly higher. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated Cx43 overexpression inhibited the CaMKIIγ expression, and CaMKIIγ was involved in the HIF-1 signaling pathway. In addition, we also found Cx43 overexpression remarkably decreased the HIF-1 protein and p300 mRNA expression, which inhibits the CaMKIIγ/HIF-1 signaling pathway. CONCLUSIONS Taken together, these results suggested Cx43 overexpression inhibits the expression of calcium/calmodulin dependent protein CaMKⅡγ via the Cx43/CaMKIIγ/HIF-1 axis, which finally reduces the myocardial apoptosis and incidence of AF.
Collapse
|
4
|
Cheng X, Zhang R, Wei S, Huang J, Zhai K, Li Y, Gao B. Dexamethasone Alleviates Myocardial Injury in a Rat Model of Acute Myocardial Infarction Supported by Venoarterial Extracorporeal Membrane Oxygenation. Front Public Health 2022; 10:900751. [PMID: 35928492 PMCID: PMC9343845 DOI: 10.3389/fpubh.2022.900751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial ischemia causes myocardial inflammation. Research indicates that the venoarterial extracorporeal membrane oxygenation (VA ECMO) provides cardiac support; however, the inflammatory response caused by myocardial ischemia remains unresolved. Dexamethasone (Dex), a broad anti-inflammatory agent, exhibits a cardioprotective effect. This study aims to investigate the effect of Dex on a rat model of acute myocardial infarction (AMI) supported by VA ECMO. Male Sprague-Dawley rats (300–350 g) were randomly divided into three groups: Sham group (n = 5), ECMO group (n = 6), and ECMO + Dex group (n = 6). AMI was induced by ligating the left anterior descending (LAD) coronary artery. Sham group only thoracotomy was performed but LAD was not ligated. The ECMO and ECMO + Dex groups were subjected to 1 h of AMI and 2 h of VA ECMO. In the ECMO + Dex group, Dex (0.2 mg/kg) was intravenously injected into the rats after 1 h of AMI. Lastly, myocardial tissue and blood samples were harvested for further evaluation. The ECMO + Dex group significantly reduced infarct size and levels of cTnI, cTnT, and CK-MB. Apoptotic cells and the expression levels of Bax, Caspase3, and Cle-Caspase3 proteins were markedly lower in the ECMO + Dex group than that in the ECMO group. Neutrophil and macrophage infiltration was lower in the ECMO + Dex group than in the ECMO group. A significant reduction was noted in ICAM-1, C5a, MMP-9, IL-1β, IL-6, and TNF-α. In summary, our findings revealed that Dex alleviates myocardial injury in a rat model of AMI supported by VA ECMO.
Collapse
Affiliation(s)
- Xingdong Cheng
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Rongzhi Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Shilin Wei
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jian Huang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Kerong Zhai
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Bingren Gao
| |
Collapse
|
5
|
Dashti-Khavidaki S, Saidi R, Lu H. Current status of glucocorticoid usage in solid organ transplantation. World J Transplant 2021; 11:443-465. [PMID: 34868896 PMCID: PMC8603633 DOI: 10.5500/wjt.v11.i11.443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) have been the mainstay of immunosuppressive therapy in solid organ transplantation (SOT) for decades, due to their potent effects on innate immunity and tissue protective effects. However, some SOT centers are reluctant to administer GCs long-term because of the various related side effects. This review summarizes the advantages and disadvantages of GCs in SOT. PubMed and Scopus databases were searched from 2011 to April 2021 using search syntaxes covering “transplantation” and “glucocorticoids”. GCs are used in transplant recipients, transplant donors, and organ perfusate solution to improve transplant outcomes. In SOT recipients, GCs are administered as induction and maintenance immunosuppressive therapy. GCs are also the cornerstone to treat acute antibody- and T-cell-mediated rejections. Addition of GCs to organ perfusate solution and pretreatment of transplant donors with GCs are recommended by some guidelines and protocols, to reduce ischemia-reperfusion injury peri-transplant. GCs with low bioavailability and high potency for GC receptors, such as budesonide, nanoparticle-mediated targeted delivery of GCs to specific organs, and combination use of dexamethasone with inducers of immune-regulatory cells, are new methods of GC application in SOT patients to reduce side effects or induce immune-tolerance instead of immunosuppression. Various side effects involving different non-targeted organs/tissues, such as bone, cardiovascular, neuromuscular, skin and gastrointestinal tract, have been noted for GCs. There are also potential drug-drug interactions for GCs in SOT patients.
Collapse
Affiliation(s)
- Simin Dashti-Khavidaki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155, Iran
| | - Reza Saidi
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
6
|
Yang X, Zhang L, Liu H, Shao Y, Zhang S. Cardiac Sympathetic Denervation Suppresses Atrial Fibrillation and Blood Pressure in a Chronic Intermittent Hypoxia Rat Model of Obstructive Sleep Apnea. J Am Heart Assoc 2020; 8:e010254. [PMID: 30757948 PMCID: PMC6405657 DOI: 10.1161/jaha.118.010254] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Chronic intermittent hypoxia ( CIH ) is a distinct pathological mechanism of obstructive sleep apnea ( OSA ), which is recognized as an independent risk factor for cardiovascular diseases. The aims of this study were to ascertain whether CIH induces atrial fibrillation ( AF ), to determine whether cardiac sympathetic denervation ( CSD ) can prevent it and suppress blood pressure, and to explore the potential molecular mechanisms involved. Methods and Results Sixty Sprague-Dawley male rats were randomly divided into 4 groups: sham, CSD , CIH , CIH + CSD . The rats were exposed either to CIH 8 hours daily or normoxia for 6 weeks. Cardiac pathology and structure were analyzed by hematoxylin and eosin staining and echocardiogram. ECG, blood pressure, body weight, and blood gas were recorded. Connexin 43 and tyrosine hydroxylase were detected by western blot, immunohistochemistry, and immunofluorescence. CIH induced atrial remodeling, and increased AF inducibility. CSD treatment reduced postapneic blood pressure rises and AF susceptibility, which could attenuate CIH -associated structural atrial arrhythmogenic remodeling. In addition, CIH -induced sympathetic nerve hyperinnervation and CSD treatment reduced sympathetic innervation, which may affect CIH -induced AF -associated sympathovagal imbalance. Connexin 43 was specifically downregulated in CIH , whereas CSD treatment increased its expression. Conclusions These results suggested CIH induces atrial remodeling, increases AF inducibility, results in sympathetic nerve hyperinnervation, and decreases connexin 43 expression, but CSD treatment reduces AF susceptibility, postapneic blood pressure increase, sympathetic innervation, and the alteration of Cx43, which may be a key point in the genesis of CIH -induced AF .
Collapse
Affiliation(s)
- Xuechao Yang
- 1 Department of Cardiothoracic Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu People's Republic of China
| | - Linfei Zhang
- 1 Department of Cardiothoracic Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu People's Republic of China
| | - Huan Liu
- 1 Department of Cardiothoracic Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu People's Republic of China
| | - Yongfeng Shao
- 1 Department of Cardiothoracic Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu People's Republic of China
| | - Shijiang Zhang
- 1 Department of Cardiothoracic Surgery The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu People's Republic of China
| |
Collapse
|
7
|
Wang D, Huang Z, Li L, Yuan Y, Xiang L, Wu X, Ni C, Yu W. Intracarotid cold saline infusion contributes to neuroprotection in MCAO‑induced ischemic stroke in rats via serum and glucocorticoid‑regulated kinase 1. Mol Med Rep 2019; 20:3942-3950. [PMID: 31485662 DOI: 10.3892/mmr.2019.10599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 11/05/2022] Open
Abstract
Intracarotid cold saline infusion (ICSI) brings about neuroprotective effects in ischemic stroke. However, the involvement of serum and glucocorticoid‑regulated kinase 1 (SGK1) in the underlying mechanism of ICSI is not fully understood; therefore, we used the rat middle cerebral artery occlusion (MCAO) model to investigate the neuroprotective effects of ICSI on ischemic stroke in rats, as well as the involvement of SGK1 in these effects. ICSI decreased infarct size and brain swelling, as determined by 2,3,5‑triphenyltetrazolium chloride staining and the dry‑wet weight method, respectively. The results of terminal deoxynucleotidyl transferase mediated nick end labeling (TUNEL) and Nissl staining showed that ICSI also suppressed apoptosis and increased the relative integral optical density (IOD) values of Nissl bodies in the rat MCAO model. Regarding the mechanism, the results of immunohistochemistry and western blotting revealed that ICSI upregulated SGK1 expression and downregulated beclin‑1 and LC‑3 expression in the rat MCAO model. In addition, SGK1 knockdown increased ICSI‑mediated infarct size and brain swelling, promoted apoptosis, and reduced the IOD values of Nissl bodies in the rat MCAO model. In addition, we found that SGK1 knockdown upregulated beclin‑1 and LC‑3 expression mediated by ICSI. Overall, ICSI had a neuroprotective effect on ischemic stroke after reperfusion by upregulating SGK1 and inhibiting autophagy.
Collapse
Affiliation(s)
- Dazhi Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhi Huang
- Department of Interventional Radiology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, P.R. China
| | - Lei Li
- Department of General Courses, People's Armed College of Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Yingnan Yuan
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Lei Xiang
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Xiaowen Wu
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
8
|
Subramani S, Aldrich A, Dwarakanath S, Sugawara A, Hanada S. Early Graft Dysfunction Following Heart Transplant: Prevention and Management. Semin Cardiothorac Vasc Anesth 2019; 24:24-33. [DOI: 10.1177/1089253219867694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heart transplant can be considered as the “gold standard” treatment for end-stage heart failure, with nearly 5.7 million adults in the United States carrying a diagnosis of heart failure. According to the International Society for Heart and Lung Transplantation registry, nearly 3300 orthotopic heart transplants were performed in 2016 in North America. In spite of significant improvements in overall perioperative care of heart transplant recipients for the past few decades, the risk of 30-day mortality remains 5% to 10%, primarily related to early failure of the allograft. Early graft dysfunction (EGD) occurs within 24 hours after transplant, manifesting as left ventricular dysfunction, right ventricular dysfunction, or biventricular dysfunction. EGD is further classified into primary and secondary graft dysfunction. This review focus on describing overall incidences of EGD, potential risk factors associated with EGD, perioperative preventive measures, and various management options.
Collapse
|
9
|
Yang X, Shi Y, Zhang L, Liu H, Shao Y, Zhang S. Overexpression of filamin c in chronic intermittent hypoxia-induced cardiomyocyte apoptosis is a potential cardioprotective target for obstructive sleep apnea. Sleep Breath 2018; 23:493-502. [PMID: 30194514 DOI: 10.1007/s11325-018-1712-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/04/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Chronic intermittent hypoxia (CIH) is key pathological mechanism of obstructive sleep apnea (OSA), which induced cardiac dysfunction. Filamin c (FLNC) is a muscle-restricted isoform and predominantly expressed in muscle tissue. In this study, we utilized a recently developed CIH rat model to mimic OSA, investigated the expression of FLNC in cardiomyocytes, and examined the correlations of FLNC with active caspase-3 to ascertain whether FLNC regulates the survival of cardiomyocytes. METHODS Forty Sprague-Dawley rats were randomly divided into normoxia and CIH groups. All rats were exposed either to normoxia or CIH 8 h daily for 6 weeks. Echocardiogram and HE staining were used to examine cardiac pathology, structure, and function. Body weight, heart weight, and blood gas values were recorded, respectively. The FLNC, Bax, Bcl-2, BNIP 3, and active caspase-3 proteins were detected by western blot; FLNC was examined by immunohistochemistry and immunofluorescence. Association of FLNC with cardiomyocyte apoptosis was detected by immunofluorescence. RESULTS CIH induced cardiac injuries and caused arterial blood gas disorder. FLNC significantly increased in CIH-induced cardiomyocytes than that in normoxia tissues. Pro-apoptotic BNIP 3 and Bax proteins were significantly increased in CIH, whereas anti-apoptotic member Bcl-2 was decreased. Active caspase-3, a universal marker of apoptosis, was significantly increased in CIH group. Co-localizations of FLNC and active caspase-3 were observed in CIH group. CONCLUSIONS These results suggested FLNC is implicated in the pathogenesis of CIH-induced cardiomyocyte apoptosis, and FLNC may serve as a novel cardioprotective target for OSA patients.
Collapse
Affiliation(s)
- Xuechao Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yang Shi
- Department of Cardiothoracic Surgery, Yancheng First People's Hospital, Yancheng, 224001, Jiangsu, People's Republic of China
| | - Linfei Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huan Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yongfeng Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shijiang Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Zakliczynski M. Primary graft dysfunction after heart transplantation: What are we fighting for? J Heart Lung Transplant 2017; 37:679-680. [PMID: 29096937 DOI: 10.1016/j.healun.2017.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
- Michael Zakliczynski
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland.
| |
Collapse
|