1
|
Walabh P, Moore DP, Hajinicolaou C. Post-transplant lymphoproliferative disorder in pediatric liver transplant recipients: Experience from a South African transplant center. Transpl Infect Dis 2024; 26:e14221. [PMID: 38152054 DOI: 10.1111/tid.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Post-transplant lymphoproliferative disorder (PTLD) is a clinically heterogeneous potentially fatal complication of pediatric liver transplantation (PLT). We determined the prevalence, complications, and associated factors for PTLD in PLT recipients from Wits Donald Gordon Medical Centre, South Africa from January 2012 to August 2019. METHODS We performed a retrospective record review of 150 PLT recipients. RESULTS Histologically proven PTLD occurred in 17/150 PLT recipients (11.3%). Children with PTLD were significantly younger at transplant (17.9 vs. 32.7 months, p = 0.001) with a significantly higher prevalence of obstructive etiology (17/17 vs. 81/133, p = 0.001). Fifteen (88.2%) children with PTLD were Epstein-Barr virus (EBV) seronegative at transplant. High post-transplant EBV viral load at a threshold value of 4.8 log10 DNA copies/mL (sensitivity: 80.0% [95% confidence interval {CI}, 46.7%-100.0%]; specificity: 73.1% [95% CI 42.3%-93.3%; area under the curve {AUC} 75.8%]) and low post-transplant albumin levels at a threshold value of 21.5 g/L (sensitivity: 70.6% [95% CI, 41.2%-94.1%]; specificity: 85.7% [95% CI, 60.4%-94.5%; {AUC} 74.8%]) were associated with PTLD. The prevalence of cytomegalovirus (CMV) disease was significantly higher in children who developed PTLD versus non-PTLD (12/17 vs. 18/133; p < 0.001). CMV disease and the combination of post-transplant high EBV viral load and low albumin were independently associated with an increased risk of developing PTLD. Four (23.5%) children with PTLD died, however, survival was equivalent to non-PTLD PLT (p = 0.580). CONCLUSION The prevalence of PTLD in our cohort mirrors international cohorts, with mortality similar to non-PTLD PLT recipients.
Collapse
Affiliation(s)
- Priya Walabh
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Paediatric Gastroenterology and Hepatology Unit, Charlotte Maxeke Johannesburg Hospital, University of Witwatersrand, Johannesburg, South Africa
- Gauteng Provincial Solid Organ Transplant Division, Johannesburg, South Africa
| | - David P Moore
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, University of Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Vaccines and Infectious Diseases Analytics (VIDA) Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christina Hajinicolaou
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, University of Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics and Child Health, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Carbone A, Chadburn A, Gloghini A, Vaccher E, Bower M. Immune deficiency/dysregulation -associated lymphoproliferative disorders. Revised classification and management. Blood Rev 2024; 64:101167. [PMID: 38195294 DOI: 10.1016/j.blre.2023.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Significant advances in the field of lymphoma have resulted in two recent classification proposals, the International Consensus Classification (ICC) and the 5th edition WHO. A few entities are categorized differently in the ICC compared to the WHO. Nowhere is this more apparent than the immunodeficiency lymphoproliferative disorders. The three previous versions of the WHO classification (3rd, 4th and revised 4th editions) and the ICC focused on four clinical settings in which these lesions arise for primary categorization. In contrast the 2023 WHO 5th edition includes pathologic characteristics including morphology and viral status, in addition to clinical setting, as important information for lesion classification. In addition, the 2023 WHO recognizes a broader number of clinical scenarios in which these lesions arise, including not only traditional types of immune deficiency but also immune dysregulation. With this classification it is hoped that new treatment strategies will be developed leading to better patient outcomes.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Aviano, Italy.
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of America.
| | - Annunziata Gloghini
- Department of Advanced Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Emanuela Vaccher
- Infectious Diseases and Tumors Unit, Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
| | - Mark Bower
- Department of Oncology and National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London SW109NH, UK.
| |
Collapse
|
3
|
Antala S, DiNorcia J, Bucuvalas J. Balancing immunosuppression in pediatric liver transplantation: Playing the long game. Pediatr Transplant 2023; 27:e14575. [PMID: 37439035 DOI: 10.1111/petr.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
The overarching goal in the care of pediatric liver transplant recipients is to optimize allograft and patient health. Balancing immunosuppression to maintain allograft health while avoiding medication side effects is essential for long-term survival and optimal quality of life in pediatric liver transplant recipients. Utilizing precision medicine to personalize immunosuppression, which includes minimization and withdrawal, is core to this effort. The unique anatomy and physiology of the liver make it more tolerant to immune-mediated injury and a more favorable organ for immunosuppression minimization and withdrawal. However, several challenges exist. Standard biochemical values and histologic features may not reliably predict allograft health after a reduction in immunosuppression. Additionally, biochemical values alone do not reliably identify which patients can successfully develop operational tolerance, as there may be occult allograft injury despite normal liver enzymes. Finally, the durability of tolerance after successful reduction in immunosuppression remains uncertain over time. Innovative tools show promise in circumventing these challenges, but more research is needed to determine actual clinical utility. While immunosuppression-free transplant may not be a current reality for most pediatric liver transplant recipients, strategies to safely minimize immunosuppression without compromising allograft health are within reach. Each liver allograft and recipient pair requires a different degree of immune modulation, and through a structured process of minimization and withdrawal, immunosuppression can indeed be tailored in a precise, personalized way to optimize outcomes. This review focuses on the progress that has been made to individualize immunosuppression in pediatric liver transplantation to ensure optimal allograft and recipient health.
Collapse
Affiliation(s)
- Swati Antala
- Department of Pediatrics, Icahn School of Medicine, Kravis Children's Hospital at Mount Sinai, New York City, New York, USA
| | - Joseph DiNorcia
- Recanati-Miller Transplantation Institute, Mount Sinai Hospital, New York City, New York, USA
| | - John Bucuvalas
- Department of Pediatrics, Icahn School of Medicine, Kravis Children's Hospital at Mount Sinai, New York City, New York, USA
| |
Collapse
|
4
|
Steidl C, Kridel R, Binkley M, Morton LM, Chadburn A. The pathobiology of select adolescent young adult lymphomas. EJHAEM 2023; 4:892-901. [PMID: 38024596 PMCID: PMC10660115 DOI: 10.1002/jha2.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 12/01/2023]
Abstract
Lymphoid cancers are among the most frequent cancers diagnosed in adolescents and young adults (AYA), ranging from approximately 30%-35% of cancer diagnoses in adolescent patients (age 10-19) to approximately 10% in patients aged 30-39 years. Moreover, the specific distribution of lymphoid cancer types varies by age with substantial shifts in the subtype distributions between pediatric, AYA, adult, and older adult patients. Currently, biology studies specific to AYA lymphomas are rare and therefore insight into age-related pathogenesis is incomplete. This review focuses on the paradigmatic epidemiology and pathogenesis of select lymphomas, occurring in the AYA patient population. With the example of posttransplant lymphoproliferative disorders, nodular lymphocyte-predominant Hodgkin lymphoma, follicular lymphoma (incl. pediatric-type follicular lymphoma), and mediastinal lymphomas (incl. classic Hodgkin lymphoma, primary mediastinal large B cell lymphoma and mediastinal gray zone lymphoma), we here illustrate the current state-of-the-art in lymphoma classification, recent molecular insights including genomics, and translational opportunities. To improve outcome and quality of life, international collaboration in consortia dedicated to AYA lymphoma is needed to overcome challenges related to siloed biospecimens and data collections as well as to develop studies designed specifically for this unique population.
Collapse
Affiliation(s)
- Christian Steidl
- Centre for Lymphoid CancerBC CancerVancouverBritish ColumbiaCanada
| | - Robert Kridel
- Princess Margaret Cancer Centre ‐ University Health NetworkTorontoOntarioCanada
| | - Michael Binkley
- Department of Radiation OncologyStanford UniversityStanfordCaliforniaUSA
| | - Lindsay M. Morton
- Radiation Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Amy Chadburn
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
5
|
Chadburn A. Post-transplant lymphoproliferative disorders (PTLD) in adolescents and young adults: A category in need of definition. Semin Diagn Pathol 2023; 40:401-407. [PMID: 37596187 DOI: 10.1053/j.semdp.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Post-transplant lymphoproliferative disorders are a well-recognized complication of solid organ and stem cell transplantation. Much data has accumulated with respect to the pathobiology and clinical behavior of these lesions in the general post-transplant population as well as in the pediatric and adult age groups. However, information as to these lesions in the adolescent and young adult populations, which bridge the pediatric and adult groups, is limited. In this review, the focus is on this unique population of PTLD patients and their proliferations.
Collapse
Affiliation(s)
- Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 E 68th Street, Starr 709, New York, NY 10065, United States.
| |
Collapse
|
6
|
Dulek DE. Update on Epidemiology and Outcomes of Infection in Pediatric Organ Transplant Recipients. Infect Dis Clin North Am 2023; 37:561-575. [PMID: 37532391 DOI: 10.1016/j.idc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Pediatric solid organ transplant (SOT) recipients are at risk for infection following transplantation. Data from adult SOT recipients are often used to guide prevention and treatment of infections associated with organ transplantation in children. This article highlights key recent pediatric SOT-specific publications for an array of infectious complications of organ transplantation. Attention is given to areas of need for future study.
Collapse
Affiliation(s)
- Daniel E Dulek
- Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
| |
Collapse
|
7
|
Feng H, Xi ZF, Kasahara M, Xia Q. Pediatric liver transplantation: progress in optimizing long-term outcomes and directions for future research. Sci Bull (Beijing) 2022; 67:1929-1931. [PMID: 36546196 DOI: 10.1016/j.scib.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China
| | - Zhi-Feng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China
| | - Mureo Kasahara
- Transplantation Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China.
| |
Collapse
|