1
|
Zhang D, Zhu H, Yu X, Wang L, Wen Y, Zhang L, Tong J, Shen Y. Blue light attenuates TGF-β2-induced epithelial-mesenchymal transition in human lens epithelial cells via autophagy impairment. BMC Ophthalmol 2022; 22:456. [DOI: 10.1186/s12886-022-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Pathogenesis of posterior capsular opacification (PCO) was related to pathological epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). It has been reported that blue light could have an effect on EMT. This study aims to elucidate the role and potential mechanism of autophagy in EMT after blue light exposure in LECs.
Methods
HLE-B3 cells were treated with TGF-β2 with different concentration and time to induce EMT as a model of PCO in vitro. Cells were exposed to blue light with or without TGF-β2. The expression levels of EMT-associated markers were analyzed by qRT-PCR, western blotting and cell migration ability was determined by transwell migration assay and wound healing assay. The expressions of autophagy-related proteins were analyzed by western blotting, immunofluorescence and transmission electron microscopy. Rapamycin and chloroquine were utilized in cells for autophagy activation and inhibition.
Results
TGF-β2 induced autophagy activation during EMT progression in HLE-B3 cells in a dose- and time-dependent manner. Blue light exposure inhibited TGF-β2-induced EMT characterized by inhibited expression of EMT related markers and reduced migration capacity. Meanwhile, blue light exposure impaired autophagy activated by TGF-β2. Furthermore, Autophagy activation with rapamycin rescued EMT attenuated by blue light. Autophagy inhibition with chloroquine reduced TGF-β2-induced EMT in HLE-B3 cells.
Conclusion
Blue light exposure had inhibited effects on TGF-β2-induced EMT in LECs through autophagy impairment, which provides a new insight on prevention and treatment of PCO.
Collapse
|
2
|
Feldman TB, Dontsov AE, Yakovleva MA, Ostrovsky MA. Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age. Biophys Rev 2022; 14:1051-1065. [PMID: 36124271 PMCID: PMC9481861 DOI: 10.1007/s12551-022-00989-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Lipofuscin granules (LGs) are accumulated in the retinal pigment epithelium (RPE) cells. The progressive LG accumulation can somehow lead to pathology and accelerate the aging process. The review examines composition, spectral properties and photoactivity of LGs isolated from the human cadaver eyes. By use of atomic force microscopy and near-field microscopy, we have revealed the fluorescent heterogeneity of LGs. We have discovered the generation of reactive oxygen species by LGs, and found that LGs and melanolipofuscin granules are capable of photoinduced oxidation of lipids. It was shown that A2E, as the main fluorophore (bisretinoid) of LGs, is much less active as an oxidation photosensitizer than other fluorophores (bisretinoids) of LGs. Photooxidized products of bisretinoids pose a much greater danger to the cell than non-oxidized one. Our studies of the fluorescent properties of LGs and their fluorophores (bisretinoids) showed for the first time that their spectral characteristics change (shift to the short-wavelength region) in pathology and after exposure to ionizing radiation. By recording the fluorescence spectra and fluorescence decay kinetics of oxidized products of LG fluorophores, it is possible to improve the methods of early diagnosis of degenerative diseases. Lipofuscin ("aging pigment") is not an inert "slag". The photoactivity of LGs can pose a significant danger to the RPE cells. Fluorescence characteristics of LGs are a tool to detect early stages of degeneration in the retina and RPE.
Collapse
Affiliation(s)
- T. B. Feldman
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - A. E. Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Dontsov A, Yakovleva M, Trofimova N, Sakina N, Gulin A, Aybush A, Gostev F, Vasin A, Feldman T, Ostrovsky M. Water-Soluble Products of Photooxidative Destruction of the Bisretinoid A2E Cause Proteins Modification in the Dark. Int J Mol Sci 2022; 23:ijms23031534. [PMID: 35163454 PMCID: PMC8836230 DOI: 10.3390/ijms23031534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Aging of the retina is accompanied by a sharp increase in the content of lipofuscin granules and bisretinoid A2E in the cells of the retinal pigment epithelium (RPE) of the human eye. It is known that A2E can have a toxic effect on RPE cells. However, the specific mechanisms of the toxic effect of A2E are poorly understood. We investigated the effect of the products of photooxidative destruction of A2E on the modification of bovine serum albumin (BSA) and hemoglobin from bovine erythrocytes. A2E was irradiated with a blue light-emitting diode (LED) source (450 nm) or full visible light (400–700 nm) of a halogen lamp, and the resulting water-soluble products of photooxidative destruction were investigated for the content of carbonyl compounds by mass spectrometry and reaction with thiobarbituric acid. It has been shown that water-soluble products formed during A2E photooxidation and containing carbonyl compounds cause modification of serum albumin and hemoglobin, measured by an increase in fluorescence intensity at 440–455 nm. The antiglycation agent aminoguanidine inhibited the process of modification of proteins. It is assumed that water-soluble carbonyl products formed as a result of A2E photodestruction led to the formation of modified proteins, activation of the inflammation process, and, as a consequence, to the progression of various senile eye pathologies.
Collapse
Affiliation(s)
- Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
- Correspondence: ; +7-495-939-7422
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
| | - Natalia Trofimova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
| | - Natalia Sakina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (A.A.); (F.G.); (A.V.)
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (A.A.); (F.G.); (A.V.)
| | - Fedor Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (A.A.); (F.G.); (A.V.)
| | - Alexander Vasin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (A.A.); (F.G.); (A.V.)
| | - Tatiana Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
| | - Mikhail Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
| |
Collapse
|
4
|
Zhang D, Mihai DM, Washington I. Vitamin A cycle byproducts explain retinal damage and molecular changes thought to initiate retinal degeneration. Biol Open 2021; 10:273577. [PMID: 34842275 PMCID: PMC8649638 DOI: 10.1242/bio.058600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
In the most prevalent retinal diseases, including Stargardt disease and age-related macular degeneration (AMD), byproducts of vitamin A form in the retina abnormally during the vitamin A cycle. Despite evidence of their toxicity, whether these vitamin A cycle byproducts contribute to retinal disease, are symptoms, beneficial, or benign has been debated. We delivered a representative vitamin A byproduct, A2E, to the rat's retina and monitored electrophysiological, histological, proteomic, and transcriptomic changes. We show that the vitamin A cycle byproduct is sufficient alone to damage the RPE, photoreceptor inner and outer segments, and the outer plexiform layer, cause the formation of sub-retinal debris, alter transcription and protein synthesis, and diminish retinal function. The presented data are consistent with the theory that the formation of vitamin A byproducts during the vitamin A cycle is neither benign nor beneficial but may be sufficient alone to cause the most prevalent forms of retinal disease. Retarding the formation of vitamin A byproducts could potentially address the root cause of several retinal diseases to eliminate the threat of irreversible blindness for millions of people. Summary: During the vitamin A cycle, byproducts of vitamin A form in the eye. Using a rat model, we show that the byproducts alone can explain several retinal derangements observed in the prodromal phase of human retinal disease. Retarding the formation of these byproducts may address the root cause of the most prevalent retinal diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA.,biOOrg3.14, Buffalo, WY 82834, USA
| |
Collapse
|
5
|
Meng LH, Chen YX. Lipid accumulation and protein modifications of Bruch's membrane in age-related macular degeneration. Int J Ophthalmol 2021; 14:766-773. [PMID: 34012894 DOI: 10.18240/ijo.2021.05.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disease, which is the leading cause of blindness in western countries. There is an urgency to establish new therapeutic strategies that could prevent or delay the progression of AMD more efficiently. Until now, the pathogenesis of AMD has remained unclear, limiting the development of the novel therapy. Bruch's membrane (BM) goes through remarkable changes in AMD, playing a significant role during the disease course. The main aim of this review is to present the crucial processes that occur at the level of BM, with special consideration of the lipid accumulation and protein modifications. Besides, some therapies targeted at these molecules and the construction of BM in tissue engineering of retinal pigment epithelium (RPE) cells transplantation were listed. Hopefully, this review may provide a reference for researchers engaged in pathogenesis or management on AMD.
Collapse
Affiliation(s)
- Li-Hui Meng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - You-Xin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
6
|
Lin CH, Wu MR, Huang WJ, Chow DSL, Hsiao G, Cheng YW. Low-Luminance Blue Light-Enhanced Phototoxicity in A2E-Laden RPE Cell Cultures and Rats. Int J Mol Sci 2019; 20:ijms20071799. [PMID: 30979028 PMCID: PMC6480556 DOI: 10.3390/ijms20071799] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
N-retinylidene-N-retinylethanolamine (A2E) and other bisretinoids are components of lipofuscin and accumulate in retinal pigment epithelial (RPE) cells—these adducts are recognized in the pathogenesis of retinal degeneration. Further, blue light-emitting diode (LED) light (BLL)-induced retinal toxicity plays an important role in retinal degeneration. Here, we demonstrate that low-luminance BLL enhances phototoxicity in A2E-laden RPE cells and rats. RPE cells were subjected to synthetic A2E, and the effects of BLL on activation of apoptotic biomarkers were examined by measuring the levels of cleaved caspase-3. BLL modulates the protein expression of zonula-occludens 1 (ZO-1) and paracellular permeability in A2E-laden RPE cells. Early inflammatory and angiogenic genes were also screened after short-term BLL exposure. In this study, we developed a rat model for A2E treatment with or without BLL exposure for 21 days. BLL exposure caused fundus damage, decreased total retinal thickness, and caused neuron transduction injury in the retina, which were consistent with the in vitro data. We suggest that the synergistic effects of BLL and A2E accumulation in the retina increase the risk of retinal degeneration. These outcomes help elucidate the associations between BLL/A2E and angiogenic/apoptotic mechanisms, as well as furthering therapeutic strategies.
Collapse
Affiliation(s)
- Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Man-Ru Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Diana Shu-Lian Chow
- Institute of Drug Education and Research, College of Pharmacy, University of Houston, Texas 77004, USA.
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
7
|
Protective mechanisms of polyphenol-enriched fraction of Vaccinium uliginosum L. Against blue light-induced cell death of human retinal pigmented epithelial cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
8
|
Washington I, Saad L. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:347-53. [PMID: 26427431 DOI: 10.1007/978-3-319-17121-0_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.
Collapse
Affiliation(s)
- Ilyas Washington
- Department of Ophthalmology, Columbia University Medical Center, 160 Fort Washington Ave, Eye Research, 10032, New York, NY, USA.
| | - Leonide Saad
- Alkeus Pharmaceuticals, Inc., 02210, Boston, MA, USA.
| |
Collapse
|
9
|
Penn J, Mihai DM, Washington I. Morphological and physiological retinal degeneration induced by intravenous delivery of vitamin A dimers in rabbits. Dis Model Mech 2014; 8:131-8. [PMID: 25504631 PMCID: PMC4314778 DOI: 10.1242/dmm.017194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The eye uses vitamin A as a cofactor to sense light and, during this process, some vitamin A molecules dimerize, forming vitamin A dimers. A striking chemical signature of retinas undergoing degeneration in major eye diseases such as age-related macular degeneration (AMD) and Stargardt disease is the accumulation of these dimers in the retinal pigment epithelium (RPE) and Bruch's membrane (BM). However, it is not known whether dimers of vitamin A are secondary symptoms or primary insults that drive degeneration. Here, we present a chromatography-free method to prepare gram quantities of the vitamin A dimer, A2E, and show that intravenous administration of A2E to the rabbit results in retinal degeneration. A2E-damaged photoreceptors and RPE cells triggered inflammation, induced remolding of the choroidal vasculature and triggered a decline in the retina's response to light. Data suggest that vitamin A dimers are not bystanders, but can be primary drivers of retinal degeneration. Thus, preventing dimer formation could be a preemptive strategy to address serious forms of blindness.
Collapse
Affiliation(s)
- Jackie Penn
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA.
| |
Collapse
|
10
|
Mihai DM, Washington I. Vitamin A dimers trigger the protracted death of retinal pigment epithelium cells. Cell Death Dis 2014; 5:e1348. [PMID: 25058422 PMCID: PMC4123103 DOI: 10.1038/cddis.2014.314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/24/2014] [Accepted: 05/29/2014] [Indexed: 01/05/2023]
Abstract
Cellular events responsible for the initiation of major neurodegenerative disorders of the eye leading to blindness, including age-related macular degeneration, Stargardt and Best diseases, are poorly understood. Accumulation of vitamin A dimers, such as N-retinylidene-N-retinylethanolamine (A2E) in the retinal pigment epithelium (RPE), is one of the earliest measurable events preceding retinal degeneration. However, the extent to which these dimers contribute to tissue degeneration is not clear. To determine if A2E could trigger morphological changes associated with the degenerating RPE and subsequent cell death, we evaluated its toxicity to cultured human RPE cells (ARPE-19). We show that A2E triggered the accumulation of debris followed by a protracted death. A2E was up to ≈ 14-fold more toxic than its precursor, retinaldehyde. Measurements reveal that the concentration of A2E in the aged human eye could exceed the concentration of all other retinoids, opening the possibility of A2E-triggered cell death by several reported mechanisms. Findings suggest that accumulation of vitamin A dimers such as A2E in the human eye might be responsible for the formation of ubiquitous RPE debris, an early indication of retinal degeneration, and that preventing or reducing the accumulation of vitamin A dimers is a prudent strategy to prevent blindness.
Collapse
Affiliation(s)
- D M Mihai
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, USA
| | - I Washington
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|