1
|
Latimer JJ, Alhamed A, Sveiven S, Almutairy A, Klimas NG, Abreu M, Sullivan K, Grant SG. Preliminary Evidence for a Hormetic Effect on DNA Nucleotide Excision Repair in Veterans with Gulf War Illness. Mil Med 2021; 185:e47-e52. [PMID: 31334811 PMCID: PMC7353836 DOI: 10.1093/milmed/usz177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Introduction Veterans of the 1991 Gulf War were potentially exposed to a mixture of stress, chemicals and radiation that may have contributed to the persistent symptoms of Gulf War Illness (GWI). The genotoxic effects of some of these exposures are mediated by the DNA nucleotide excision repair (NER) pathway. We hypothesized that individuals with relatively low DNA repair capacity would suffer greater damage from cumulative genotoxic exposures, some of which would persist, causing ongoing problems. Materials and Methods Blood samples were obtained from symptomatic Gulf War veterans and age-matched controls. The unscheduled DNA synthesis assay, a functional measurement of NER capacity, was performed on cultured lymphocytes, and lymphocyte mRNA was extracted and analyzed by sequencing. Results Despite our hypothesis that GWI would be associated with DNA repair deficiency, NER capacity in lymphocytes from affected GWI veterans actually exhibited a significantly elevated level of DNA repair (p = 0.016). Both total gene expression and NER gene expression successfully differentiated individuals with GWI from unaffected controls. The observed functional increase in DNA repair capacity was accompanied by an overexpression of genes in the NER pathway, as determined by RNA sequencing analysis. Conclusion We suggest that the observed elevations in DNA repair capacity and NER gene expression are indicative of a “hormetic,” i.e., induced or adaptive protective response to battlefield exposures. Normally such effects are short-term, but in these individuals this response has resulted in a long-term metabolic shift that may also be responsible for the persistent symptoms of GWI.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Abdullah Alhamed
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Stefanie Sveiven
- South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Ali Almutairy
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Nancy G Klimas
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,Department of Medicine, Miami VA Healthcare System, 1201 NW 16th St, Miami, FL 33313
| | - Maria Abreu
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118
| | - Stephen G Grant
- South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328.,Department of Public Health, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328
| |
Collapse
|
2
|
Dakup PP, Porter KI, Gajula RP, Goel PN, Cheng Z, Gaddameedhi S. The circadian clock protects against ionizing radiation-induced cardiotoxicity. FASEB J 2020; 34:3347-3358. [PMID: 31919902 DOI: 10.1096/fj.201901850rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/21/2023]
Abstract
Radiation therapy (RT) is commonly used to treat solid tumors of the breast, lung, and esophagus; however, the heart is an unintentional target of ionizing radiation (IR). IR exposure to the heart results in chronic toxicities including heart failure. We hypothesize that the circadian system plays regulatory roles in minimizing the IR-induced cardiotoxicity. We treated mice in control (Day Shift), environmentally disrupted (Rotating Shift), and genetically disrupted (Per 1/2 mutant) circadian conditions with 18 Gy of IR to the heart. Compared to control mice, circadian clock disruption significantly exacerbated post-IR systolic dysfunction (by ultrasound echocardiography) and increased fibrosis in mice. At the cellular level, Bmal1 protein bound to Atm, Brca1, and Brca2 promoter regions and its expression level was inversely correlated with the DNA damage levels based on the state of the clock. Further studies with circadian synchronized cardiomyocytes revealed that Bmal1 depletion increased the IR-induced DNA damage and apoptosis. Collectively, these findings suggest that the circadian clock protects from IR-induced toxicity and potentially impacts RT treatment outcome in cancer patients through IR-induced DNA damage responses.
Collapse
Affiliation(s)
- Panshak P Dakup
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Kenneth I Porter
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Rajendra P Gajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Peeyush N Goel
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Shobhan Gaddameedhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| |
Collapse
|
3
|
Ibrahim OM, As Sobeai HM, Grant SG, Latimer JJ. Nucleotide excision repair is a predictor of early relapse in pediatric acute lymphoblastic leukemia. BMC Med Genomics 2018; 11:95. [PMID: 30376844 PMCID: PMC6208034 DOI: 10.1186/s12920-018-0422-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Nucleotide Excision Repair (NER) is a major pathway of mammalian DNA repair that is associated with drug resistance and has not been well characterized in acute lymphoblastic leukemia (ALL). The objective of this study was to explore the role of NER in relapsed ALL patients. We hypothesized that increased expression of NER genes was associated with drug resistance and relapse in ALL. METHODS We performed secondary data analysis on two sets of pediatric ALL patients that all ultimately relapsed, and who had matched diagnosis-relapse gene expression microarray data (GSE28460 and GSE18497). GSE28460 included 49 precursor-B-ALL patients, and GSE18497 included 27 precursor-B-ALL and 14 T-ALL patients. Microarray data were processed using the Plier 16 algorithm and the 20 canonical NER genes were extracted. Comparisons were made between time of diagnosis and relapse, and between early and late relapsing subgroups. The Chi-square test was used to evaluate whether NER gene expression was altered at the level of the entire pathway and individual gene expression was compared using t-tests. RESULTS We found that gene expression of the NER pathway was significantly increased upon relapse in patients that took 3 years or greater to relapse (late relapsers, P = .007), whereas no such change was evident in patients that relapsed in less than 3 years (early relapsers, P = .180). Moreover, at diagnosis, the NER gene expression of the early relapsing subpopulation was already significantly elevated over that of the late relapsing group (P < .001). This pattern was validated by an 'NER score' established by averaging the relative expression of the 20 canonical NER genes. The NER score at diagnosis was found to be significantly associated with disease-free survival in precursor-B-ALL (P < .001). CONCLUSION Patients are over two times more likely to undergo early relapse if they have a high NER score at diagnosis, hazard ratio 2.008, 95% CI (1.256-3.211). The NER score may provide a underlying mechanism for "time to remission", a known prognostic factor in ALL, and a rationale for differential treatment.
Collapse
Affiliation(s)
- Omar M. Ibrahim
- Department of Pharmaceutical Sciences, College of Pharmacy, 3200 S University Drive, Fort Lauderdale, FL 33328 USA
- AutoNation Institute for Breast and Solid Tumor Cancer Research, 3301 College Avenue, Fort Lauderdale, FL 33314 USA
| | - Homood M. As Sobeai
- Department of Pharmaceutical Sciences, College of Pharmacy, 3200 S University Drive, Fort Lauderdale, FL 33328 USA
- AutoNation Institute for Breast and Solid Tumor Cancer Research, 3301 College Avenue, Fort Lauderdale, FL 33314 USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2475, Riyadh, 11451 Saudi Arabia
| | - Stephen G. Grant
- AutoNation Institute for Breast and Solid Tumor Cancer Research, 3301 College Avenue, Fort Lauderdale, FL 33314 USA
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328 USA
| | - Jean J. Latimer
- Department of Pharmaceutical Sciences, College of Pharmacy, 3200 S University Drive, Fort Lauderdale, FL 33328 USA
- AutoNation Institute for Breast and Solid Tumor Cancer Research, 3301 College Avenue, Fort Lauderdale, FL 33314 USA
| |
Collapse
|
4
|
Tsai CW, Chang WS, Shen TC, Su CH, Wang HC, Liu LC, Bau DT. Contribution of excision repair cross-complementing group 1 genotypes to triple negative breast cancer risk. PLoS One 2018; 13:e0202112. [PMID: 30096175 PMCID: PMC6086438 DOI: 10.1371/journal.pone.0202112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Compared with other subgroups of breast cancer, triple negative breast cancer (TNBC) is considered to be the one with the greatest invasiveness and metastatic mobility, and the highest recurrence rate. Considering the lack of predictive markers for TNBC, we aimed to examine the contribution of excision repair cross complementing-group 1 (ERCC1) genotypes to TNBC. The rs11615 and rs3212986 of ERCC1 were investigated and evaluated for their associations with susceptibility to breast cancer, especially TNBC, in Taiwan. In this study, 1,232 breast cancer patients (104 were TNBC) and 1,232 healthy controls were recruited and their genotypes at ERCC1 rs11615 and rs3212986 were revealed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis. Our results indicated that genotypes of ERCC1 rs11615 (Ptrend = 2.2*10E-9), but not rs3212986 (Ptrend = 0.6181), were associated with breast cancer risk. In the allelic frequency distribution analysis, breast cancer patients carried the T allele of ERCC1 rs11615 a higher rate than the control subjects, further supporting the idea that ERCC1 rs11615 TT genotype is positively associated with breast cancer susceptibility. More importantly, the frequency of the ERCC1 rs11615 TT genotype was even higher among TNBC patients than among other subtypes of breast cancer patients (P = 0.0001, odds ratio = 1.73, 95% confidence interval = 1.15-2.63). The genotypes of ERCC1 rs11615 were not associated with Ki67 status. Our findings firstly show that the T allele of ERCC1 rs11615 can serve as a predictive biomarker for breast cancer and TNBC. We believe that ERCC1 could serve as a target for personalized treatment of breast cancer, especially for TNBC.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Te-Chun Shen
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Chen-Hsien Su
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hwei-Chung Wang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Liang-Chih Liu
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
5
|
Zafeer M, Mahjabeen I, Kayani MA. Increased expression of ERCC2 gene in head and neck cancer is associated with aggressive tumors: a systematic review and case-control study. Int J Biol Markers 2016; 31:e17-25. [PMID: 26659720 DOI: 10.5301/jbm.5000186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The excision repair cross-complementation group 2 (ERCC2) ATP-dependent helicase is an essential member of the DNA repair pathway. It has been observed to be differentially expressed in different cancers, which shows its involvement in carcinogenesis. AIM In the present study we have tried to determine the association of expression patterns of this gene with head and neck carcinogenesis. METHOD We first carried out a systematic review of the available studies on the role of ERCC2 in head and neck cancer (HNC). In order to test the hypothesis that the expression patterns of XPD/ERCC2 play a critical role in HNC pathogenesis, we then conducted a population based case-control study on 81 head and neck tumor samples and adjacent normal-tissue control samples. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction (qPCR) were used to assess ERCC2 deregulation at the mRNA level. RESULT Expression analysis showed that the ERCC2 expression level was significantly upregulated (p<0.05) in HNC tissues compared with adjacent normal tissues. Furthermore, the expression pattern of ERCC2 was correlated with the expression pattern of Ki-67 and a significant correlation (r = 0.230, p<0.03) was observed between ERCC2 and Ki-67. Spearman's correlation also showed a significant correlation between ERCC2 expression and tumor stage (r = 0.271, p<0.02) and grade (r = 0.228, p<0.02) of HNC. CONCLUSIONS Our data suggest that deregulation of ERCC2 in HNC has the potential to predict a more aggressive cancer phenotype and may be considered a possible biomarker for improved diagnosis and prognosis of HNC.
Collapse
Affiliation(s)
- Maryam Zafeer
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad - Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad - Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad - Pakistan
| |
Collapse
|