1
|
Zhang K, Wang H, Cheng S, Zhang C, Zhai X, Lin X, Chen H, Gao R, Dong W. A benzaldehyde-indole fused chromophore-based fluorescent probe for double-response to cyanide and hypochlorite in living cells. Analyst 2021; 146:5658-5667. [PMID: 34382628 DOI: 10.1039/d1an01015h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the rapid development of various industries, cyanide (CN-) and hypochlorite (ClO-) have a tremendously adverse effect on the health of humans and animals. In this study, a fluorescent probe HHTB based on a benzaldehyde-indole fused chromophore was designed to detect cyanide and hypochlorite simultaneously. The synthesized probe was found to have strong anti-interference ability. In addition, the designed probe could respond rapidly to ClO- in just 80 s, while the color changed visibly from red to colorless. Moreover, the response time to CN- was longer (about 160 s), with the apparent color change from red to light red. The ratiometric and colorimetric absorbance variation of HHTB was due to the nucleophilic attack of CN- on the indole C[double bond, length as m-dash]N functional group and the strong oxidization of ClO- which destroyed the C[double bond, length as m-dash]C bonds and the conjugation systems. Furthermore, the probe HHTB responding to ClO- and CN- presented high sensitivity, as the calculated detection limits were 1.18 nM and 1.40 nM, respectively. The probe was also found to have low biological toxicity and was used in living cells successfully. Therefore, it has good application prospect in the field of cell imaging and biomedicine. The binding mechanism of HHTB-CN and the reaction mechanism of HHTB and ClO- were further elucidated by a series of experiments.
Collapse
Affiliation(s)
- Kexin Zhang
- Molecular Metabolism Center, Nanjing University of Science and Technology, Nanjing, 210094, China and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinrang Zhai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xiangpeng Lin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hao Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Ruru Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wei Dong
- Molecular Metabolism Center, Nanjing University of Science and Technology, Nanjing, 210094, China and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
2
|
Cosco ED, Lim I, Sletten EM. Photophysical Properties of Indocyanine Green in the Shortwave Infrared Region. CHEMPHOTOCHEM 2021; 5:727-734. [PMID: 34504949 PMCID: PMC8423351 DOI: 10.1002/cptc.202100045] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 02/04/2023]
Abstract
With the growing development of new contrast agents for optical imaging using near-infrared and shortwave infrared (SWIR) wavelengths, it is essential to have consistent bench-marks for emitters in these regions. Indocyanine green (ICG), a ubiquitous and FDA-approved organic dye and optical imaging agent, is commonly employed as a standard for photophysical properties and biological performance for imaging experiments at these wavelengths. Yet, its reported photophysical properties across organic and aqueous solvents vary greatly in the literature, which hinders its ability to be used as a consistent benchmark. Herein, we measure photophysical properties in organic and aqueous solvents using InGaAs detection (~950-1,700 nm), providing particular relevance for SWIR imaging.
Collapse
Affiliation(s)
- Emily D Cosco
- Dr. E. D. Cosco, I. Lim, Prof. E. M. Sletten Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095 (USA)
| | - Irene Lim
- Dr. E. D. Cosco, I. Lim, Prof. E. M. Sletten Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095 (USA)
| | - Ellen M Sletten
- Dr. E. D. Cosco, I. Lim, Prof. E. M. Sletten Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095 (USA)
| |
Collapse
|
3
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Targeted Nanoparticles for Fluorescence Imaging of Folate Receptor Positive Tumors. Biomolecules 2020; 10:biom10121651. [PMID: 33317162 PMCID: PMC7764199 DOI: 10.3390/biom10121651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.
Collapse
|
5
|
Choi PJ, Park TI, Cooper E, Dragunow M, Denny WA, Jose J. Heptamethine Cyanine Dye Mediated Drug Delivery: Hype or Hope. Bioconjug Chem 2020; 31:1724-1739. [DOI: 10.1021/acs.bioconjchem.0c00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I−H. Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Choi PJ, Cooper E, Schweder P, Mee E, Turner C, Faull R, Denny WA, Dragunow M, Park TIH, Jose J. PARP inhibitor cyanine dye conjugate with enhanced cytotoxic and antiproliferative activity in patient derived glioblastoma cell lines. Bioorg Med Chem Lett 2020; 30:127252. [PMID: 32527552 DOI: 10.1016/j.bmcl.2020.127252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/30/2023]
Abstract
We describe the synthesis and in vitro activity of drug-dye conjugate 1, which is a combination of the PARP inhibitor rucaparib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed strong cytotoxic activity with nanomolar potency (EC50: 128 nM), which was a 780 fold improvement over rucaparib itself. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug for treatment for glioblastoma even though these cell lines were resistant to TMZ treatment. We envisage such conjugates to be worth exploring for their utility in the treatment of various brain cancers.
Collapse
Affiliation(s)
- Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick Schweder
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, 2 Park Road, Auckland, New Zealand
| | - Richard Faull
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Usama SM, Park GK, Nomura S, Baek Y, Choi HS, Burgess K. Role of Albumin in Accumulation and Persistence of Tumor-Seeking Cyanine Dyes. Bioconjug Chem 2020; 31:248-259. [PMID: 31909595 DOI: 10.1021/acs.bioconjchem.9b00771] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some heptamethine cyanine dyes accumulate in solid tumors in vivo and persist there for several days. The reasons why they accumulate and persist in tumors were incompletely defined, but explanations based on uptake into cancer cells via organic anion transporting polypeptides (OATPs) have been widely discussed. All cyanine-based "tumor-seeking dyes" have a chloride centrally placed on the heptamethine bridge (a "meso-chloride"). We were intrigued and perplexed by the correlation between this particular functional group and tumor uptake, so the following study was designed. It features four dyes (1-Cl, 1-Ph, 5-Cl, and 5-Ph) with complementary properties. Dye 1-Cl is otherwise known as MHI-148, and 1-Ph is a close analog wherein the meso-chloride has been replaced by a phenyl group. Data presented here shows that both 1-Cl and 1-Ph form noncovalent adducts with albumin, but only 1-Cl can form a covalent one. Both dyes 5-Cl and 5-Ph have a methylene (CH2) unit replaced by a dimethylammonium functionality (N+Me2). Data presented here shows that both these dyes 5 do not form tight noncovalent adducts with albumin, and only 5-Cl can form a covalent one (though much more slowly than 1-Cl). In tissue culture experiments, uptake of dyes 1 is more impacted by the albumin in the media than by the pan-OATP uptake inhibitor (BSP) that has been used to connect uptake of tumor-seeking dyes in vivo with the OATPs. Uptake of 1-Cl in media containing fluorescein-labeled albumin gave a high degree of colocalization of intracellular fluorescence. No evidence was found for the involvement of OATPs in uptake of the dyes into cells in media containing albumin. In an in vivo tumor model, only the two dyes that can form albumin adducts (1-Cl and 5-Cl) gave intratumor fluorescence that persisted long enough to be clearly discerned over the background (∼4 h); this fluorescence was still observed at 48 h. Tumors could be imaged with a higher contrast if 5-Cl is used instead of 1-Cl, because 5-Cl is cleared more rapidly from healthy tissues. Overall, the evidence is consistent with in vitro and in vivo results and indicates that the two dyes in the test series that accumulate in tumors and persist there (1-Cl and 5-Cl, true tumor-seeking dyes) do so as covalent albumin adducts trapped in tumor tissue via uptake by some cancer cells and via the enhanced permeability and retention (EPR) effect.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry , Texas A & M University , College Station , Texas 77842 , United States
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Shinsuke Nomura
- Gordon Center for Medical Imaging, Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Kevin Burgess
- Department of Chemistry , Texas A & M University , College Station , Texas 77842 , United States
| |
Collapse
|
8
|
Podrugina TA, Pavlova AS, Doroshenko IA, Kuz’min VA, Kostyukov AA, Shtil’ AA. Synthesis and photophysical properties of conformationally fixed tricarbocyanines with phosphonate groups. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2141-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Nani RR, Kelley JA, Ivanic J, Schnermann MJ. Reactive Species Involved in the Regioselective Photooxidation of Heptamethine Cyanines. Chem Sci 2015; 6:6556-6563. [PMID: 26508998 PMCID: PMC4618397 DOI: 10.1039/c5sc02396c] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/06/2015] [Indexed: 12/27/2022] Open
Abstract
Heptamethine cyanines are important near-IR fluorophores used in many fluorescence applications. Despite this utility, these molecules are susceptible to light-promoted reactions (photobleaching) involving photochemically generated reactive oxygen species (ROS). Here, we have sought to define key chemical aspects of this nearly inescapable process. Near-IR photolysis of a model heptamethine cyanine leads to the regioselective oxidative cleavage of the cyanine polyene. We report the first quantitative analysis of the major reaction pathway following either photolysis or exposure to candidate ROS. These studies clearly indicate that only singlet oxygen (1O2), and not other feasible ROS, recapitulates the direct photolysis pathway. Computational studies were employed to investigate the regioselectivity of the oxidative cleavage process, and the theoretical ratio is comparable to observed experimental values. These results provide a more complete picture of heptamethine cyanine photooxidation, and provide insight for design of improved compounds for future applications.
Collapse
Affiliation(s)
- Roger R. Nani
- Chemical Biology Laboratory
, Center for Cancer Research
, National Cancer Institute at Frederick
,
Frederick
, Maryland 21702
, USA
.
| | - James A. Kelley
- Chemical Biology Laboratory
, Center for Cancer Research
, National Cancer Institute at Frederick
,
Frederick
, Maryland 21702
, USA
.
| | - Joseph Ivanic
- Advanced Biomedical Computing Center
, DSITP
, Frederick National Laboratory for Cancer Research
,
Frederick
, Maryland 21702
, USA
.
| | - Martin J. Schnermann
- Chemical Biology Laboratory
, Center for Cancer Research
, National Cancer Institute at Frederick
,
Frederick
, Maryland 21702
, USA
.
| |
Collapse
|