1
|
Wang X, Sun Y, Luan C, Yang S, Wang K, Zhang X, Hao R, Zhang W. Effect of hydrogen-rich saline on melanopsin after acute blue light-induced retinal damage in rats. Photochem Photobiol 2024. [PMID: 38634423 DOI: 10.1111/php.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Excessive exposure to blue light can cause retinal damage. Hydrogen-rich saline (HRS), one of the hydrogen therapies, has been demonstrated to be effective in eye photodamage, but the effect on the expression of melanopsin in intrinsically photosensitive retinal ganglion cells (ipRGCs) is unknown. In this study, we used a rat model of light-induced retinal injury to observe the expression of melanopsin after HRS treatment and to determine the effect of HRS on retinal ganglion cell protection. Adult SD rats were exposed to blue light (48 h) and treated with HRS for 0, 3, 7, and 14 days. Real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) were performed to find the expression of genes and proteins, respectively. The function of retinal ipRGCs was measured by pattern-evoked electroretinography (pERG). The number and morphological changes of melanopsin-positive ganglion cells in the retina were observed by immunofluorescence (IF). Acute blue light exposure caused a decrease in ipRGC function, decreased expression of melanopsin protein and the melanopsin-positive RGCs, and diminished immunoreactivity in dendrites. However, over time, melanopsin showed a tendency to self-recovery, with an increase in melanopsin protein expression and the number of melanopsin-positive RGCs, with incomplete recovery of function within two weeks. HRS treatment accelerated the recovery process, with a significant increase in melanopsin expression and the number of melanopsin-positive RGCs, and an improvement in the pERG waveform within two weeks.
Collapse
Affiliation(s)
- Xiao Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Yifan Sun
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Changlin Luan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Shiqiao Yang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Kailei Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Xiaoran Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Rui Hao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, P. R. China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, P. R. China
| |
Collapse
|
2
|
Zhang Z, Shi C, Han J, Ge X, Li N, Liu Y, Huang J, Chen S. Nonvisual system-mediated body color change in fish reveals nonvisual function of Opsin 3 in skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112861. [PMID: 38335869 DOI: 10.1016/j.jphotobiol.2024.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Body-color changes in many poikilothermic animals can occur quickly. This color change is generally initiated by visual system, followed by neuromuscular or neuroendocrine control. We have previously showed that the ventral skin color of the large yellow croaker (Larimichthys crocea) presents golden yellow in dark environment and quickly changes to silvery white in light environment. In the present study, we found that the light-induced whitening of ventral skin color was independent of visual input. Using light-emitting diode sources of different wavelength with same luminance (150 lx) but different absolute irradiance (0.039-0.333 mW/cm2), we further found that the blue light (λmax = 480 nm, 0.107 mW/cm2) is more effectively in induction of whitening of ventral skin color in compare with other light sources. Interestingly, the result of RT-PCR showed opsin 3 transcripts expressed in xanthophores. Recombinant protein of Opsin 3 with 11-cis retinal formed functional blue-sensitive pigment, with an absorption maximum at 468 nm. The HEK293T cells transfected with Opsin 3 showed a blue light-evoked Ca2+ response. Knock-down of Opsin 3 expression blocked the light-induced xanthosomes aggregation in vitro. Moreover, the light-induced xanthosomes aggregation was mediated via Ca2+-PKC and Ca2+-CaMKII pathways, and relied on microtubules and dynein. Decrease of cAMP levels was a prerequisite for xanthosomes aggregation. Our results provide a unique organism model exhibiting light-induced quick body color change, which was independent of visual input but rather rely on non-visual function of Opsin 3 within xanthophore.
Collapse
Affiliation(s)
- Zihao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jian Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; Key laboratory of fish applied biology and aquaculture in North China, College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xiaoyu Ge
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Na Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shixi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Souto-Neto JA, David DD, Zanetti G, Sua-Cespedes C, Freret-Meurer NV, Moraes MN, de Assis LVM, Castrucci AMDL. Light-specific wavelengths differentially affect the exploration rate, opercular beat, skin color change, opsin transcripts, and the oxi-redox system of the longsnout seahorse Hippocampus reidi. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111551. [PMID: 37972916 DOI: 10.1016/j.cbpa.2023.111551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.
Collapse
Affiliation(s)
- José Araújo Souto-Neto
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Laboratory of Micropollutants, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Cristhian Sua-Cespedes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Maria Nathália Moraes
- Laboratory of Molecular Chronobiology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, United States.
| |
Collapse
|
4
|
Bertolesi GE, Debnath N, Malik HR, Man LLH, McFarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022; 15:784478. [PMID: 35126061 PMCID: PMC8814574 DOI: 10.3389/fnana.2021.784478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
The eye, the pineal complex and the skin are important photosensitive organs. The African clawed frog, Xenopus laevis, senses light from the environment and adjusts skin color accordingly. For example, light reflected from the surface induces camouflage through background adaptation while light from above produces circadian variation in skin pigmentation. During embryogenesis, background adaptation, and circadian skin variation are segregated responses regulated by the secretion of α-melanocyte-stimulating hormone (α-MSH) and melatonin through the photosensitivity of the eye and pineal complex, respectively. Changes in the color of skin pigmentation have been used as a readout of biochemical and physiological processes since the initial purification of pineal melatonin from pigs, and more recently have been employed to better understand the neuroendocrine circuit that regulates background adaptation. The identification of 37 type II opsin genes in the genome of the allotetraploid X. laevis, combined with analysis of their expression in the eye, pineal complex and skin, is contributing to the elucidation of the role of opsins in the different photosensitive organs, but also brings new questions and challenges. In this review, we analyze new findings regarding the anatomical localization and functions of type II opsins in sensing light. The contribution of X. laevis in revealing the neuroendocrine circuits that regulate background adaptation and circadian light variation through changes in skin pigmentation is discussed. Finally, the presence of opsins in X. laevis skin melanophores is presented and compared with the secretory melanocytes of birds and mammals.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
5
|
Liu X, Wang L, Wang Z, Dong Y, Chen Y, Cao J. Mel1b and Mel1c melatonin receptors mediate green light-induced secretion of growth hormone in chick adenohypophysis cells via the AC/PKA and ERK1/2 signalling pathways. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112322. [PMID: 34736066 DOI: 10.1016/j.jphotobiol.2021.112322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
A previous study showed that melatonin (MEL) membrane receptors 1b (Mel1b) and Mel1c promoted the secretion of growth hormone (GH) in chick adenohypophysis cells under monochromatic green light. However, the intracellular signalling pathways of these two receptors are unclear. Therefore, cultured adenohypophysis cells derived from chickens exposed to monochromatic green light were treated with MEL, Mel1b- and Mel1c-specific blockers, protein kinase A (PKA) inhibitors and adenylate cyclase (AC), or AC activator in vitro to explore the signal transduction mechanism that promote the secretion of GH. The results showed that Mel1b and Mel1c participate in MEL-mediated green light-induced secretion of GH in chick adenohypophysis cells. However, MEL increased cyclic adenosine monophosphate (cAMP) levels, and p-PKA protein levels were blocked by a Mel1b-specific antagonist but not a Mel1c-specific antagonist, which indicated that Mel1b affected the secretion of GH via the AC/cAMP/PKA signalling pathway. Moreover, Mel1b and Mel1c both activated ERK1/2 to regulate the secretion of GH. In addition, intracellular and extracellular Ca2+ channels were also involved in secretion of GH in chick adenohypophysis cells. These results demonstrate that the MEL mediated green light-induced secretion of GH in chick adenohypophysis via the Mel1b/AC/PKA/ERK1/2, Mel1c/ERK1/2, and intracellular and extracellular Ca2+ channel signalling pathways.
Collapse
Affiliation(s)
- Xinfeng Liu
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Wang
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor. Cell Tissue Res 2021; 385:519-538. [PMID: 34236517 DOI: 10.1007/s00441-021-03500-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Since the discovery of melanopsin as a retinal non-visual photopigment, opsins have been described in several organs and cells. This distribution is strikingly different from the classical localization of photopigments in light-exposed tissues such as the eyes and the skin. More than 10 years ago, a new paradigm in the field was created as opsins were shown, to detect not only light, but also thermal energy in Drosophila. In agreement with these findings, thermal detection by opsins was also reported in mammalian cells. Considering the presence of opsins in tissues not reached by light, an intriguing question has emerged: What is the role of a classical light-sensor, and more recently appreciated thermo-sensor, in these tissues? To tackle this question, we address in this review the most recent studies in the field, with emphasis in mammals. We provide the present view about the role of opsins in peripheral tissues, aiming to integrate the current knowledge of the presence and function of opsins in organs that are not directly affected by light.
Collapse
|
7
|
Kusumoto J, Takeo M, Hashikawa K, Komori T, Tsuji T, Terashi H, Sakakibara S. OPN4 belongs to the photosensitive system of the human skin. Genes Cells 2020; 25:215-225. [DOI: 10.1111/gtc.12751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Kusumoto
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
- Department of Oral and Maxillofacial Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Makoto Takeo
- Laboratory for Organ Regeneration RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Kazunobu Hashikawa
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Hiroto Terashi
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Shunsuke Sakakibara
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
8
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
9
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Castrucci AMDL. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: Unravelling the photosensitive system of the skin. Eur J Cell Biol 2018; 97:150-162. [PMID: 29395480 DOI: 10.1016/j.ejcb.2018.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
The mammalian skin has a photosensitive system comprised by several opsins, including rhodopsin (OPN2) and melanopsin (OPN4). Recently, our group showed that UVA (4.4 kJ/m2) leads to immediate pigment darkening (IPD) in murine normal and malignant melanocytes. We show the role of OPN2 and OPN4 as UVA sensors: UVA-induced IPD was fully abolished when OPN4 was pharmacologically inhibited by AA9253 or when OPN2 and OPN4 were knocked down by siRNA in both cell lines. Our data, however, demonstrate that phospholipase C/protein kinase C pathway, a classical OPN4 pathway, is not involved in UVA-induced IPD in either cell line. Nonetheless, in both cell types we have shown that: a) intracellular calcium signal is necessary for UVA-induced IPD; b) the involvement of CaMK II, whose inhibition, abolished the UVA-induced IPD; c) the role of CAMK II/NOS/sGC/cGMP pathway in the process since inhibition of either NOS or sGC abolished the UVA-induced IPD. Taken altogether, we show that OPN2 and OPN4 participate in IPD induced by UVA in murine normal and malignant melanocytes through a conserved common pathway. Interestingly, upon knockdown of OPN2 or OPN4, the UVA-driven IPD is completely lost, which suggests that both opsins are required and cooperatively signal in murine both cell lines. The participation of OPN2 and OPN4 system in UVA radiation-induced response, if proven to take place in human skin, may represent an interesting pharmacological target for the treatment of depigmentary disorders and skin-related cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Bertolesi GE, McFarlane S. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res 2018; 31:354-373. [PMID: 29239123 DOI: 10.1111/pcmr.12678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Melanopsin photopigments, Opn4x and Opn4m, were evolutionary selected to "see the light" in systems that regulate skin colour change. In this review, we analyse the roles of melanopsins, and how critical evolutionary developments, including the requirement for thermoregulation and ultraviolet protection, the emergence of a background adaptation mechanism in land-dwelling amphibian ancestors and the loss of a photosensitive pineal gland in mammals, may have helped sculpt the mechanisms that regulate light-controlled skin pigmentation. These mechanisms include melanopsin in skin pigment cells directly inducing skin darkening for thermoregulation/ultraviolet protection; melanopsin-expressing eye cells controlling neuroendocrine circuits to mediate background adaptation in amphibians in response to surface-reflected light; and pineal gland secretion of melatonin phased to environmental illuminance to regulate circadian and seasonal variation in skin colour, a process initiated by melanopsin-expressing eye cells in mammals, and by as yet unknown non-visual opsins in the pineal gland of non-mammals.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Wang N, Wang R, Wang R, Tian Y, Shao C, Jia X, Chen S. The integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism. PLoS One 2017; 12:e0181761. [PMID: 28777813 PMCID: PMC5544202 DOI: 10.1371/journal.pone.0181761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023] Open
Abstract
Albinism, a phenomenon characterized by pigmentation deficiency on the ocular side of Japanese flounder (Paralichthys olivaceus), has caused significant damage. Limited mRNA and microRNA (miRNA) information is available on fish pigmentation deficiency. In this study, a high-throughput sequencing strategy was employed to identify the mRNA and miRNAs involved in P. olivaceus albinism. Based on P. olivaceus genome, RNA-seq identified 21,787 know genes and 711 new genes by transcripts assembly. Of those, 235 genes exhibited significantly different expression pattern (fold change ≥2 or ≤0.5 and q-value≤0.05), including 194 down-regulated genes and 41 up-regulated genes in albino versus normally pigmented individuals. These genes were enriched to 81 GO terms and 9 KEGG pathways (p≤0.05). Among those, the pigmentation related pathways-Melanogenesis and tyrosine metabolism were contained. High-throughput miRNA sequencing identified a total of 475 miRNAs, including 64 novel miRNAs. Furthermore, 33 differentially expressed miRNAs containing 13 up-regulated and 20 down-regulated miRNAs were identified in albino versus normally pigmented individuals (fold change ≥1.5 or ≤0.67 and p≤0.05). The next target prediction discovered a variety of putative target genes, of which, 134 genes including Tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1), Microphthalmia-associated transcription factor (MITF) were overlapped with differentially expressed genes derived from RNA-seq. These target genes were significantly enriched to 254 GO terms and 103 KEGG pathways (p<0.001). Of those, tyrosine metabolism, lysosomes, phototransduction pathways, etc., attracted considerable attention due to their involvement in regulating skin pigmentation. Expression patterns of differentially expressed mRNA and miRNAs were validated in 10 mRNA and 10 miRNAs by qRT-PCR. With high-throughput mRNA and miRNA sequencing and analysis, a series of interested mRNA and miRNAs involved in fish pigmentation are identified. And the miRNA-mRNA regulatory network also provides a solid starting point for further elucidation of fish pigmentation deficiency.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail: (NW); (SLC)
| | - Ruoqing Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Renkai Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yongsheng Tian
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Changwei Shao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences & Liaocheng People’s Hospital, Liaocheng, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail: (NW); (SLC)
| |
Collapse
|
12
|
Dexamethasone Modulates Nonvisual Opsins, Glucocorticoid Receptor, and Clock Genes in Danio rerio ZEM-2S Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8459385. [PMID: 28589149 PMCID: PMC5446867 DOI: 10.1155/2017/8459385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
Here we report, for the first time, the differential cellular distribution of two melanopsins (Opn4m1 and Opn4m2) and the effects of GR agonist, dexamethasone, on the expression of these opsins and clock genes, in the photosensitive D. rerio ZEM-2S embryonic cells. Immunopositive labeling for Opn4m1 was detected in the cell membrane whereas Opn4m2 labeling shows nuclear localization, which did not change in response to light. opn4m1, opn4m2, gr, per1b, and cry1b presented an oscillatory profile of expression in LD condition. In both DD and LD condition, dexamethasone (DEX) treatment shifted the peak expression of per1b and cry1b transcripts to ZT16, which corresponds to the highest opn4m1 expression. Interestingly, DEX promoted an increase of per1b expression when applied in LD condition but a decrease when the cells were kept under DD condition. Although DEX effects are divergent with different light conditions, the response resulted in clock synchronization in all cases. Taken together, these data demonstrate that D. rerio ZEM-2S cells possess a photosensitive system due to melanopsin expression which results in an oscillatory profile of clock genes in response to LD cycle. Moreover, we provide evidence that glucocorticoid acts as a circadian regulator of D. rerio peripheral clocks.
Collapse
|
13
|
Shirzad-Wasei N, DeGrip WJ. Heterologous expression of melanopsin: Present, problems and prospects. Prog Retin Eye Res 2016; 52:1-21. [DOI: 10.1016/j.preteyeres.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
|