Jiang Y, Liu Y, Zhang J. Antibiotic contaminants reduced the treatment efficiency of UV-C on Microcystis aeruginosa through hormesis.
ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020;
261:114193. [PMID:
32088440 DOI:
10.1016/j.envpol.2020.114193]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Antibiotic contaminants exert stimulatory hormetic effects in cyanobacteria at low (ng L-1) concentrations, which may interfere with the control of cyanobacterial bloom in aquatic environments exhibiting combined pollution. This study investigated the influence of a mixture of four popular antibiotics (sulfamethoxazole, amoxicillin, ciprofloxacin, and tetracycline) during the application of UV-C irradiation for controlling the bloom of Microcystis aeruginosa. In the absence of antibiotics, 100-500 mJ cm-2 UV-C irradiation reduced cell density, growth rate, chlorophyll a content, Fv/Fm value and microcystin concentration in M. aeruginosa in a dose-dependent manner through the downregulation of proteins related to cell division, chlorophyll synthesis, photosynthesis and microcystin synthesis. UV-C irradiation stimulated microcystin release through the upregulation of the microcystin release regulatory protein (mcyH). The presence of 40 ng L-1 antibiotic mixture during UV-C treatment significantly reduced (p < 0.05) the treatment efficiency of 100-300 mJ cm-2 UV-C on microcystin concentration, while 80 and 160 ng L-1 antibiotic mixture significantly reduced (p < 0.05) the treatment efficiency of 100-500 mJ cm-2 UV-C on cell density and microcystin concentration. The antibiotic mixture alleviated the toxicity of UV-C on M. aeruginosa through a significant stimulation of photosynthetic activity (p < 0.05) and the upregulation of proteins involved in photosynthesis, biosynthesis, protein expression, and DNA repair. Microcystin release in UV-C-treated cyanobacterial cells was further stimulated by the antibiotic mixture through the upregulation of mcyH and four ATP-binding cassette transport proteins. The interference effects of antibiotic contaminants should be fully considered when UV-C is applied to control cyanobacterial bloom in antibiotic-polluted environments. In order to eliminate the interference effects of antibiotics, the concentration of each target antibiotic is suggested to be controlled below 5 ng L-1 before the application of UV-C irradiation.
Collapse