1
|
Li Y, Guo M, Li L, Yang F, Xiong L. Effects of rice fermentation and its bioactive components on UVA-induced oxidative stress and senescence in dermal fibroblasts. Photochem Photobiol 2025; 101:392-403. [PMID: 39030789 DOI: 10.1111/php.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Photoaging, caused by ultraviolet (UV) radiation, is characterized by the senescence of skin cells and reduction of collagens. Although rice fermentation is widely used in the cosmetics, its impact on skin photoaging is still not well understood. Herein, we investigated the possible effectiveness of Maifuyin, a fermented rice product, and its components, succinic acid (SA), and choline, for safeguarding UVA-exposed human dermal fibroblasts (HDFs) against photoaging. In this study, the effects of Maifuyin, SA, and choline on UVA-induced cell death and senescence in fibroblasts were evaluated in cell counting kit-8 (CCK-8), expression of β-galactosidase (β-GAL), and matrix metalloproteinases (MMP)-1. To identify oxidative stress, the investigation focused on reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde. Additionally, a mRNA sequencing technology (RNA-seq) was applied to study the underlying mechanisms of these components on UVA-induced photoaging. Meanwhile, the level of C-X-C motif chemokine ligand 2 (CXCL2) in the cell supernatant was confirmed to assess the autocrine chemokine level. To reassess the involvement of CXCL2, the expression of β-GAL was evaluated in fibroblasts treated with or without CXCL2. The results indicated that 1 mg/mL Maifuyin and SA inhibited UVA-induced senescence in fibroblasts, MMP-1 expression, and oxidative damage. The RNA-seq revealed 1 mg/mL Maifuyin and SA might be recruited chemokine CXCLs to inhibit MMPs production and fibroblast senescence via TNFα, MAPK, and NF-κB pathways. ELISA results showed a significant reduction of autocrine CXCL2 in UVA-irradiated HDFs by pretreating Maifuyin and SA. The β-GAL staining assay revealed that CXCL2 treatment increased β-GAL activity, while the administration of Maifuyin and SA counteracted this effect in HDFs. These results highlighted the potential use of Maifuyin and SA as promising candidates for anti-photoaging applications.
Collapse
Affiliation(s)
- Yu Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Guo
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Fan Yang
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| |
Collapse
|
2
|
Anacleto Dos Anjos R, Teixeira Araújo Gonçalves da Silva J, Mançano Class B, Oliveira da Silva L, Ferreira Leal L, Bitler Delatorre Rosa S, Machado FP, Seibert França H, Monte Alto Costa A, Rocha LM, Moreno Barbosa G. Hypericum brasiliense: assessment of the antioxidant potential in UVA-induced in vitro phototoxicity. Nat Prod Res 2024:1-7. [PMID: 39568403 DOI: 10.1080/14786419.2024.2427808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/01/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024]
Abstract
Photoaging induced by ultraviolet A (UVA) radiation is mainly caused by the reactive oxygen species (ROS) increase, which trigger undesirable changes in the skin, such as inflammatory reactions, wrinkles, hyperpigmentation, and loss of elasticity. In this context, plant ingredients have been highlighted in recent decades due to their antioxidant mechanisms. This study investigated the potential of Hypericum brasiliense ethanolic extract against UVA-induced damage in 3T3 fibroblasts. Cells exposed to a single UVA dose (4 J/cm2, 30 min) were treated with different extract concentrations. The results showed that H. brasiliense extract has antioxidant potential, mitigating UVA-induced stress by reducing ROS and lipid peroxidation. Furthermore, the extract stimulated fibroblast proliferation, suggesting its potential to restore cell viability after radiation-induced damage. The search for replacing synthetic actives with natural ones reinforces the importance of these findings on the antioxidant and regenerative properties of H. brasiliense extract, making it a promising anti-aging ingredient or a sunscreen adjuvant.
Collapse
Affiliation(s)
- Raquel Anacleto Dos Anjos
- Faculty of Pharmacy, Federal Fluminense University, Niterói, Brazil
- Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | - Andréa Monte Alto Costa
- Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
3
|
Sezer A, Ozalp H, Imge Ucar-Goker B, Gencer A, Ozogul E, Cennet O, Yazici G, Arica Yegin B, Yabanoglu-Ciftci S. Protective role of transforming growth factor-Β3 (TGF-Β3) in the formation of radiation-induced capsular contracture around a breast implant: In vivo experimental study. Int J Pharm 2024; 665:124715. [PMID: 39284424 DOI: 10.1016/j.ijpharm.2024.124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Postmastectomy radiotherapy causes capsular contracture due to fibroproliferation of the capsular tissue around the implant. In fibrosis, unlike normal wound healing, structural and functional disorders are observed in the tissues caused by excessive/irregular accumulation of extracellular matrix proteins. It has been reported that transforming growth factor-β3 (TGF-β3) prevents and reverses fibrosis in various tissues or provides scarless healing with its antifibrotic effect. Additionally, TGF-β3 has been shown to reduce fibrosis in radiotherapy-induced fibrosis syndrome. However, no study in the literature investigates the effects of exogenously applied TGF-β3 on capsular contracture in aesthetic or reconstructive breast implant application. TGF-β3, which has a very short half-life, has low bioavailability with parenteral administration. Within the scope of this study, free TGF-β3 was loaded into the nanoparticles to increase its low bioavailability and extend its duration of action by providing controlled release. The aim of this study is to investigate the preventive/improving effects of radiation induced capsular contracture using chitosan film formulations containing TGF-β3 loaded poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles in implant-based breast reconstruction. In the characterization studies of nanoparticles, the particle size and zeta potential of the TGF-β3-loaded PLGA-b-PEG nanoparticle formulation selected to be used in the treatment group were found to be 123.60 ± 2.09 nm and -34.87 ± 1.42 mV, respectively. The encapsulation efficiency of the formulation was calculated as 99.91 %. A controlled release profile was obtained in in vitro release studies. Chitosan film formulations containing free TGF-β3 or TGF-β3-loaded PLGA-b-PEG nanoparticles were used in in vivo studies. In animal studies, rats were randomly distributed into 6 groups (n = 8) as sham, implant, implant + radiotherapy, implant + radiotherapy + chitosan film containing unloaded nanoparticles, implant + radiotherapy + chitosan film containing free TGF-β3, implant + radiotherapy + chitosan film containing TGF-β3 loaded nanoparticle. In all study groups, a 2 cm incision was made along the posterior axillary line at the thoracic vertebral level in rats to reach the lateral edge of the latissimus dorsi. The fascial attachment to the chest wall was then bluntly dissected to create a pocket for the implants. In the treatment groups, the wound was closed after films were placed on the outer surface of the implants. After administering prophylactic antibiotics, rats were subjected to irradiation with 10 Gy photon beams targeted to each implant site. Each implant and the surrounding excised tissue were subjected to the necessary procedures for histological (capsule thickness, cell density), immunohistochemical, and biochemical (α-SMA, vimentin, collagen type I and type III, TGF-β1 and TGF-β3: expression level/protein level) examinations. It was determined that the levels of TGF-β1 and TGF-β3 collagen type III, which decreased as a result of radiotherapy, were brought to the control level with free TGF-β3 film and TGF-β3 nanoparticle film formulations. Histological analyses, consistent with biochemical analyses, showed that thick collagen and fibrosis, which increased with radiotherapy, were brought to the control level with free TGF-β3 film and TGF-β3 nanoparticle film treatments. In biochemical analyses, the decrease in thick collagen was compatible with the decrease in the collagen type I/type III ratio in the free TGF-β3 film and TGF-β3 nanoparticle film groups. Changes in protein expression show that TGF-β3 loaded nanoparticles are more successful than free TGF-β3 in wound healing. In line with these results and the literature, it is thought that the balance of TGF-β1 and TGF-β3 should be maintained to ensure scarless wound healing with no capsule contracture.
Collapse
Affiliation(s)
- Aysima Sezer
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100 Ankara, Turkey
| | - Hulya Ozalp
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey
| | - Bercis Imge Ucar-Goker
- Kütahya Health Sciences University, Faculty of Medicine, Department of General Surgery, 43000 Kutahya, Turkey
| | - Ayse Gencer
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Ece Ozogul
- Hacettepe University, Department of Pathology, 06100 Ankara, Turkey
| | - Omer Cennet
- Hacettepe University, Faculty of Medicine, Department of General Surgery, 06100 Ankara, Turkey
| | - Gozde Yazici
- Hacettepe University, Faculty of Medicine, Department of Radiation Oncology, 06100 Ankara, Turkey
| | - Betul Arica Yegin
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Samiye Yabanoglu-Ciftci
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100 Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey; Hacettepe University, Institute of Health Sciences, Department of One Health, 06100 Ankara, Turkey.
| |
Collapse
|
4
|
Min M, Egli C, Bartolome RA, Sivamani RK. Ex vivo Evaluation of a Liposome-Mediated Antioxidant Delivery System on Markers of Skin Photoaging and Skin Penetration. Clin Cosmet Investig Dermatol 2024; 17:1481-1494. [PMID: 38933604 PMCID: PMC11199168 DOI: 10.2147/ccid.s461753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Purpose The topical application of antioxidants has been shown to augment the skin's innate antioxidant system and enhance photoprotection. A challenge of topical antioxidant formulation is stability and penetrability. The use of a targeted drug delivery system may improve the bioavailability and delivery of antioxidants. In this ex vivo study, we assessed the effects of the topical application of a liposome-encapsulated antioxidant complex versus a free antioxidant complex alone on skin photoaging parameters and penetrability in human skin explants. Patients and Methods Human organotypic skin explant cultures (hOSEC) were irradiated to mimic photoaging. The encapsulated antioxidant complex and free antioxidant complex were applied topically onto the irradiated hOSEC daily for 7 days. The two control groups were healthy untreated hOSEC and irradiated hOSEC. Photoprotective efficacy was measured with pro-inflammatory cytokine (IL-6 and IL-8) and matrix metalloproteinase 9 (MMP-9) secretion. Cell viability and metabolic activity were measured via resazurin assay. Tissue damage was evaluated via lactate dehydrogenase (LDH) cytotoxicity assay. Skin penetration of the encapsulated antioxidant complex was assessed via fluorescent dye and confocal microscopy. Results Compared to healthy skin, irradiated skin experienced increases in IL-6, IL-8 (p < 0.05), and MMP-9 (p < 0.05) secretion. After treatment with the encapsulated antioxidant complex, there was a 39.3% reduction in IL-6 secretion, 49.8% reduction in IL-8 (p < 0.05), and 38.5% reduction in MMP-9 (p < 0.05). After treatment with the free antioxidant complex, there were no significant differences in IL-6, IL-8, or MMP-9 secretion. Neither treatment group experienced significant LDH leakage or reductions in metabolic activity. Liposomes passed through the stratum corneum and into the epidermis. Conclusion The topical application of a liposome-encapsulated antioxidant complex containing ectoin, astaxanthin-rich microalgae Haematococcus pluvialis extract, and THDA improves penetrability and restored IL-6, IL-8, and MMP-9 levels in irradiated human skin explants, which was not seen in the comparator free antioxidant complex group.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Skin Science and Research Sacramento, Sacramento, CA, USA
- College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Caitlin Egli
- Integrative Skin Science and Research Sacramento, Sacramento, CA, USA
- College of Medicine, University of St. George’s, University Centre, West Indies, Grenada
| | | | - Raja K Sivamani
- Integrative Skin Science and Research Sacramento, Sacramento, CA, USA
- College of Medicine, California Northstate University, Elk Grove, CA, USA
- Department of Dermatology, University of California-Davis, Sacramento, CA, USA
- Pacific Skin Institute, Sacramento, CA, USA
| |
Collapse
|
5
|
Gag O, Dinu Ș, Manea H, Marcovici I, Pînzaru I, Popovici R, Crăiniceanu Z, Gyori Z, Iovănescu G, Chiriac S. UVA/UVB Irradiation Exerts a Distinct Phototoxic Effect on Human Keratinocytes Compared to Human Malignant Melanoma Cells. Life (Basel) 2023; 13:life13051144. [PMID: 37240789 DOI: 10.3390/life13051144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Solar ultraviolet radiation (UVR) is responsible for the development of many skin diseases, including malignant melanoma (MM). This study assessed the phototoxic effects of UVA, and UVB radiations on healthy and pathologic skin cells by evaluating the behavior of human keratinocytes (HaCaT) and MM cells (A375) at 24 h post-irradiation. The main results showed that UVA 10 J/cm2 exerted no cytotoxicity on HaCaT and A375 cells, while UVB 0.5 J/cm2 significantly reduced cell viability and confluence, induced cell shrinkage and rounding, generated nuclear and F-actin condensation, and induced apoptosis by modulating the expressions of Bax and Bcl-2. The association of UVA 10 J/cm2 with UVB 0.5 J/cm2 (UVA/UVB) induced the highest cytotoxicity in both cell lines (viability < 40%). However, the morphological changes were different-HaCaT cells showed signs of necrosis, while in A375 nuclear polarization and expulsion from the cells were observed, features that indicate enucleation. By unraveling the impact of different UVR treatments on the behavior of normal and cancer skin cells and describing enucleation as a novel process involved in the cytotoxicity of UVA/UVB irradiation, these findings bridge the gap between the current and the future status of research in the field.
Collapse
Affiliation(s)
- Otilia Gag
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Ștefania Dinu
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Horațiu Manea
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Iulia Pînzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Ramona Popovici
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Zorin Crăiniceanu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Zsolt Gyori
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Gheorghe Iovănescu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Sorin Chiriac
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Serrano-Sandoval SN, Jiménez-Rodríguez A, Hernández-Pérez J, Chavez-Santoscoy RA, Guardado-Félix D, Antunes-Ricardo M. Selenized Chickpea Sprouts Hydrolysates as a Potential Anti-Aging Ingredient. Molecules 2023; 28:molecules28083402. [PMID: 37110634 PMCID: PMC10145560 DOI: 10.3390/molecules28083402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Skin aging represents a health and aesthetic problem that could result in infections and skin diseases. Bioactive peptides can potentially be used in skin aging regulation. Chickpea (Cicer arietinum L.) selenoproteins were obtained from germination with 2 mg Na2SeO3/100 g of seeds for 2 days. Alcalase, pepsin, and trypsin were used as hydrolyzers, and a membrane < 10 kDa was used to fractionate the hydrolysate. Se content, antioxidant capacity, elastase and collagen inhibition, functional stability, and preventative capacity were analyzed. Significant increases in Se content were found in germinated chickpea flour and protein related to the control. An increase of 38% in protein was observed in the selenized flour related to the control. A band (600-550 cm-1) observed in the selenized hydrolysates suggested the insertion of Se into the protein. Hydrolysates from pepsin and trypsin had the highest antioxidant potential. Se enhanced the stability of total protein and protein hydrolysates through time and increased their antioxidant capacity. Hydrolysates > 10 kDa had higher elastase and collagenase inhibition than the total protein and hydrolysates < 10 kDa. Protein hydrolysates < 10 kDa 6 h before UVA radiation had the highest inhibition of collagen degradation. Selenized protein hydrolysates showed promising antioxidant effects that could be related to skin anti-aging effects.
Collapse
Affiliation(s)
- Sayra N Serrano-Sandoval
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Antonio Jiménez-Rodríguez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Jesús Hernández-Pérez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | | | - Daniela Guardado-Félix
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, Culiacan 80000, SIN, Mexico
| | - Marilena Antunes-Ricardo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| |
Collapse
|
7
|
Curcuma aromatica and Curcuma comosa Extracts and Isolated Constituents Provide Protection against UVB-Induced Damage and Attenuate Matrix Metalloproteinase-1 Expression in HaCaT Cells. COSMETICS 2022. [DOI: 10.3390/cosmetics9010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet-B (UVB) exposure is one of the primary extrinsic factors causing skin photoaging. It stimulates inflammatory responses and arrests the cell cycle. Matrix metalloproteinase-1 (MMP-1) secreted by keratinocytes is one of the important extracellular matrixes to attenuate UVB-induced skin aging via collagen degradation. Curcuma aromatica (CA) and Curcuma comosa (CC), the herbaceous plants in the Zingiberaceae family, are commonly used in Thai traditional women’s medicines. The present work was aimed to investigate the potential of the CA and CC extracts and their isolated compounds to attenuate UVB-induced MMP-1 and cell cycle arrest in HaCaT keratinocytes. Total phenolic contents and antioxidant capacities of the extracts were determined. CC extract contains more phenolic components and provides more potent antioxidant activities than CA extract. HaCaTs were pretreated with the extracts or their isolated constituents 1–4 for 24 h and then repeatedly exposed to UVB at 100 mJ/cm2 10 times. Both extracts and compounds 1–4 effectively reduce UVB-induced MMP-1 levels in HaCaT cells and restore cell cycle arrest. This is the first report on the potential of CA and CC extracts in reducing UVB-induced MMP-1 expression and regulating cell proliferation in HaCaT cells. Thus, CA and CC extracts might be used as alternative natural agents to prevent UVB-induced skin photoaging.
Collapse
|
8
|
Natella F, Guantario B, Ambra R, Ranaldi G, Intorre F, Burki C, Canali R. Human Metabolites of Hamaforton™ ( Hamamelis virginiana L. Extract) Modulates Fibroblast Extracellular Matrix Components in Response to UV-A Irradiation. Front Pharmacol 2022; 12:747638. [PMID: 34975471 PMCID: PMC8719534 DOI: 10.3389/fphar.2021.747638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hamamelis virginiana L. a rich source of both condensed and hydrolyzable tannins, utilized to treat dermatological disorders. Since no experimental and clinical data is available for its use as oral formulation in skin related disorders, the purpose of this study was to investigate the effects of Hamaforton™ (Hamamelis virginiana extract) metabolites on gene dysregulation induced by ultraviolet A radiation in cultured human dermal fibroblasts. A combination of in vivo and ex vivo experimental designs has been exploited in order to take into account the polyphenol metabolic transformation that occurs in humans. 12 healthy volunteers received either a capsule of Hamaforton™ or a placebo in a randomized, blinded crossover trial. After Hamaforton™ ingestion, the kinetic of appearance of galloyl derivatives was measured in plasma. Then, in the ex vivo experiment, the serum isolated after supplementation was used as a source of Hamaforton™ metabolites to enrich the culture medium of dermal fibroblasts exposed to ultraviolet A radiation. Three different gallic acid metabolites (4-O-methyl gallic acid, 4-O-methyl gallic acid sulphate and trimethyl gallic acid glucuronide) were identified in volunteer plasma. While, ultraviolet A irradiation of dermal fibroblasts affected the expression of extracellular matrix genes, the presence of Hamaforton™ metabolites in the culture media did not affect the expression of most of those genes. However, the activation of the expression of 10 different genes involved in repair processes for the maintenance of skin integrity, suggest that the metabolites can play a role in damage recovery. To our knowledge, this is the first study that demonstrates the bioavailability of Hamaforton™ phenolic compounds, and the effects of its metabolites on cultured dermal fibroblast response to ultraviolet A irradiation.
Collapse
Affiliation(s)
- Fausta Natella
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Roberto Ambra
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Giulia Ranaldi
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Federica Intorre
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | | | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| |
Collapse
|
9
|
Deotto ML, Spiller A, Sernicola A, Alaibac M. Bullous pemphigoid: An immune disorder related to aging (Review). Exp Ther Med 2021; 23:50. [PMID: 34934428 DOI: 10.3892/etm.2021.10972] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Bullous pemphigoid (BP) is the most frequent subepidermal autoimmune blistering disease and is caused by autoantibodies directed against two principal antigens of the hemidesmosome, BP antigen 180 and BP antigen 230. The pathogenesis of BP is dependent upon the interaction between genetic predisposition, physiological skin alterations due to aging and specific triggers. Several triggers have already been reported to induce this disease and include drugs, thermal or electrical burns, surgical procedures, trauma, UV radiation, radiotherapy, chemicals and infections. Data from the current literature support the hypothesis that alterations of the skin barrier associated with aging increase individual susceptibility to these aforementioned triggers. Consequently, this has been reported to lead to the attack of autoantibodies, demonstrating the predilection of BP for the elderly population. The identification of triggering factors and comorbidities may aid in understanding the pathogenesis of BP and improve clinical management by encouraging their prompt recognition and removal. Moreover, the present review has indicated that current management of BP should be aimed at counteracting the detrimental effects of aging on the skin by restoring skin barrier integrity and maintaining cutaneous homeostasis, for example with systematic applications of topical emollients and photoprotection. This strategy could prove even more beneficial in the elderly, in which frequent comorbidities associated with age often narrow available immunosuppressive treatment options. Furthermore, the safety of treatment regimens may significantly affect outcome and prognosis.
Collapse
Affiliation(s)
- Maria Ludovica Deotto
- Dermatology Unit, Department of Medicine, University of Padova, I-35121 Padua, Italy
| | - Alice Spiller
- Dermatology Unit, Department of Medicine, University of Padova, I-35121 Padua, Italy
| | - Alvise Sernicola
- Dermatology Unit, Department of Medicine, University of Padova, I-35121 Padua, Italy
| | - Mauro Alaibac
- Dermatology Unit, Department of Medicine, University of Padova, I-35121 Padua, Italy
| |
Collapse
|
10
|
Rivera-Yañez CR, Ruiz-Hurtado PA, Mendoza-Ramos MI, Reyes-Reali J, García-Romo GS, Pozo-Molina G, Reséndiz-Albor AA, Nieto-Yañez O, Méndez-Cruz AR, Méndez-Catalá CF, Rivera-Yañez N. Flavonoids Present in Propolis in the Battle against Photoaging and Psoriasis. Antioxidants (Basel) 2021; 10:antiox10122014. [PMID: 34943117 PMCID: PMC8698766 DOI: 10.3390/antiox10122014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The skin is the main external organ. It protects against different types of potentially harmful agents, such as pathogens, or physical factors, such as radiation. Skin disorders are very diverse, and some of them lack adequate and accessible treatment. The photoaging of the skin is a problem of great relevance since it is related to the development of cancer, while psoriasis is a chronic inflammatory disease that causes scaly skin lesions and deterioration of the lifestyle of people affected. These diseases affect the patient's health and quality of life, so alternatives have been sought that improve the treatment for these diseases. This review focuses on describing the properties and benefits of flavonoids from propolis against these diseases. The information collected shows that the antioxidant and anti-inflammatory properties of flavonoids play a crucial role in the control and regulation of the cellular and biochemical alterations caused by these diseases; moreover, flavones, flavonols, flavanones, flavan-3-ols, and isoflavones contained in different worldwide propolis samples are the types of flavonoids usually evaluated in both diseases. Therefore, the research carried out in the area of dermatology with bioactive compounds of different origins is of great relevance to developing preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Claudia Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico;
| | - Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero 07738, Mexico;
| | - María Isabel Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Gina Stella García-Romo
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
| | - Adolfo René Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (C.F.M.-C.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| | - Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (C.F.M.-C.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| |
Collapse
|
11
|
Pandey AK, Kumar S, Pandey AK, Reis F. Editorial: Combating Redox Imbalance-Associated Complications With Natural Products. Front Pharmacol 2021; 12:802750. [PMID: 34899360 PMCID: PMC8661448 DOI: 10.3389/fphar.2021.802750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda, India
| | - Akhilesh K Pandey
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
12
|
Xu X, Sun G, Liu J, Zhou J, Li J, Sun Z, Li X, Chen H, Zhao D, Jiang R, Sun L. Akt activation-dependent protective effect of wild ginseng adventitious root protein against UVA-induced NIH-3T3 cell damage. Wound Repair Regen 2021; 29:1006-1016. [PMID: 34448508 DOI: 10.1111/wrr.12962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Prolonged skin exposure to ultraviolet radiation can lead to development of several acute and chronic diseases, with UVA exposure considered a primary cause of dermal photodamage. We prepared a wild ginseng adventitious root extract (ARE) that could alleviate UVA irradiation-induced NIH-3T3 cell viability decline. After employing a series of purification methods to isolate main active components of ARE, adventitious root protein mixture (ARP) was identified then tested for protective effects against UVA irradiation-induced NIH-3T3 cell damage. The results showed that ARP treatment significantly reduced UVA-induced cell viability decline and confirmed that the active constituent of ARP was the protein, since proteolytic hydrolysis and heat treatment each eliminated ARP protective activity. Moreover, ARP treatment markedly inhibited UVA-induced apoptosis, cell cycle arrest and DNA fragmentation, while also significantly reversing UVA effects (elevated Bax levels, reduced Bcl-2 expression) by reducing Bax levels and increasing Bcl-2 expression. Mechanistically, ARP promoted Akt phosphorylation regardless of UVA exposure, thus confirming ARP resistance to inactivation by UVA light. Notably, in the presence of Akt inhibitor SC0227, ARP could no longer counteract UVA-induced cell viability decline and DNA fragmentation. Additionally, our results demonstrated that ARP treatment protected UVA-irradiated NIH-3T3 cells by preventing UVA-induced reduction of collagen-I expression. Taken together, these results suggest that ARP treatment of NIH-3T3 cells effectively mitigated UVA-induced cell viability decline by activating intracellular Akt to reduce UVA-induced DNA damage, leading to reduced rates of apoptosis and cell cycle arrest after UVA exposure and restoring collagen expression to normal levels.
Collapse
Affiliation(s)
- Xiaohao Xu
- Research Centre of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guang Sun
- Research Centre of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jingyuan Zhou
- Jilin Technology Innovation Centre for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin, China
| | - Jing Li
- Jilin Technology Innovation Centre for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin, China
| | - Zhuo Sun
- Jilin Technology Innovation Centre for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin, China
| | - Xiangzhu Li
- Tonghua Herbal Biotechnology Co., Ltd, Tonghua, Jilin, China
| | - Hong Chen
- Tonghua Herbal Biotechnology Co., Ltd, Tonghua, Jilin, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Rui Jiang
- Research Centre of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.,Jilin Technology Innovation Centre for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin, China
| | - Liwei Sun
- Research Centre of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
13
|
Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1746. [PMID: 34423571 DOI: 10.1002/wnan.1746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels. Nanoparticles are perceived as a powerful tool in the cosmeceutical industry both for augmenting the efficacy of existing agents and as a novel standalone therapy. Both organic and inorganic nanoparticles have been extensively investigated in antiaging applications. The use of nanoparticles helps to enhance the activity of antiaging molecules by selectively targeting cellular and molecular pathways. On the other hand, the nanoparticle platforms also gained increasing popularity as the skin protectant against extrinsic factors such as UV radiation and pollutants. This review comprehensively discusses skin aging and its mechanism by highlighting the impact on cellular, subcellular, and epigenetic elements. Importantly, the review elaborates on the examples of organic and inorganic nanoparticle-based formulations developed for antiaging application and provides mechanistic insights on how they modulate the mechanisms of skin aging. The clinical progress of nanoparticle antiaging technologies and factors that impact clinical translation are also explored. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Durga Kumari
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
14
|
Saguie BO, Martins RL, Fonseca ADSD, Romana-Souza B, Monte-Alto-Costa A. An ex vivo model of human skin photoaging induced by UVA radiation compatible with summer exposure in Brazil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112255. [PMID: 34271412 DOI: 10.1016/j.jphotobiol.2021.112255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023]
Abstract
Skin is the largest body organ and can be affected by several factors, such as ultraviolet (UV) radiation. UV radiation is subdivided in UVA, UVB and UVC according to the radiation wavelength. UVC radiation does not cross the ozone layer; UVB cause DNA damage and is closely related to carcinogenesis; UVA radiation penetrates deeply into the skin, reaching epidermis and dermis and is considered the main promoter of skin aging, known as photoaging. In order to understand photoaging mechanisms and propose efficient therapies, several photoaging study models have been developed, each with benefits and limitations, but most of them use very high doses of UVA radiation, which is not compatible with our daily sun exposure. The objective of this work was to develop a human ex vivo photoaging model induced by UVA exposure compatible to a summer in Brazil. For this, human skin fragments were obtained from healthy donors who underwent otoplasty surgery and skin explants were prepared and placed in plates, with the epidermis facing upwards. Skin explants were exposed to UVA at 16 J/cm2 carried out by protocols of 2 or 4 exposures. Results showed an increase of oxidative damage, inflammatory cells, collagenolytic and elastolytic MMPs expression as well as a decrease of elastin expression, suggesting that the experimental model based on skin explants is able to evaluate UVA-induced aging in human skin.
Collapse
Affiliation(s)
- Bianca Oliveira Saguie
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Rayssa Lopes Martins
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Adenilson de Souza da Fonseca
- Department of Biophysics and Biometrics, Rio de Janeiro State University, Av Professor Manoel de Abreu 444, 20950-170 Rio de Janeiro-RJ, Brazil
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil.
| |
Collapse
|
15
|
Budden T, Gaudy-Marqueste C, Porter A, Kay E, Gurung S, Earnshaw CH, Roeck K, Craig S, Traves V, Krutmann J, Muller P, Motta L, Zanivan S, Malliri A, Furney SJ, Nagore E, Virós A. Ultraviolet light-induced collagen degradation inhibits melanoma invasion. Nat Commun 2021; 12:2742. [PMID: 33980846 PMCID: PMC8115293 DOI: 10.1038/s41467-021-22953-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/08/2021] [Indexed: 01/26/2023] Open
Abstract
Ultraviolet radiation (UVR) damages the dermis and fibroblasts; and increases melanoma incidence. Fibroblasts and their matrix contribute to cancer, so we studied how UVR modifies dermal fibroblast function, the extracellular matrix (ECM) and melanoma invasion. We confirmed UVR-damaged fibroblasts persistently upregulate collagen-cleaving matrix metalloprotein-1 (MMP1) expression, reducing local collagen (COL1A1), and COL1A1 degradation by MMP1 decreased melanoma invasion. Conversely, inhibiting ECM degradation and MMP1 expression restored melanoma invasion. Primary cutaneous melanomas of aged humans show more cancer cells invade as single cells at the invasive front of melanomas expressing and depositing more collagen, and collagen and single melanoma cell invasion are robust predictors of poor melanoma-specific survival. Thus, primary melanomas arising over collagen-degraded skin are less invasive, and reduced invasion improves survival. However, melanoma-associated fibroblasts can restore invasion by increasing collagen synthesis. Finally, high COL1A1 gene expression is a biomarker of poor outcome across a range of primary cancers.
Collapse
Affiliation(s)
- Timothy Budden
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | | | - Andrew Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - Emily Kay
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Beatson Institute, Glasgow, UK
| | - Shilpa Gurung
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Charles H Earnshaw
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Katharina Roeck
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Sarah Craig
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Víctor Traves
- Department of Dermatology, Institut Valencià Oncologia, Valencia, Spain
| | - Jean Krutmann
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Muller
- Tumour Suppressors Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Luisa Motta
- Department of Histopathology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Beatson Institute, Glasgow, UK
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - Simon J Furney
- Genomic Oncology Research Group, Department of Physiology and Medical Physics, Royal College of Surgeons in, Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland Dublin, Dublin, Ireland
| | - Eduardo Nagore
- Department of Dermatology, Institut Valencià Oncologia, Valencia, Spain
| | - Amaya Virós
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Lohakul J, Chaiprasongsuk A, Jeayeng S, Saelim M, Muanjumpon P, Thanachaiphiwat S, Tripatara P, Soontrapa K, Lumlerdkij N, Akarasereenont P, Panich U. The Protective Effect of Polyherbal Formulation, Harak Formula, on UVA-Induced Photoaging of Human Dermal Fibroblasts and Mouse Skin via Promoting Nrf2-Regulated Antioxidant Defense. Front Pharmacol 2021; 12:649820. [PMID: 33912060 PMCID: PMC8072377 DOI: 10.3389/fphar.2021.649820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Polyherbal formulation combining multiple herbs is suggested to achieve enhanced therapeutic effects and reduce toxicity. Harak herbal formula (HRF) extracts were proposed to regulate skin responses to UVR through their ability to suppress UVA-induced matrix metalloproteinase-1 (MMP-1) and pigmentation via promoting antioxidant defenses in in vitro models. Therefore, natural products targeting Nrf2 (nuclear factor erythroid 2-related factor 2)-regulated antioxidant response might represent promising anti-photoaging candidates. Hesperetin (HSP) was suggested as a putative bioactive compound of the HRF, as previously shown by its chemical profiling using the liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In this study, we explored the anti-photoaging effects of HRF extracts and HSP on normal human dermal fibroblasts (NHDFs) and mouse skin exposed to UVA irradiation. Pretreatment of NHDFs with HRF extracts and HSP protected against UVA (8 J/cm2)-mediated cytotoxicity and reactive oxygen species (ROS) formation. The HRF and HSP pretreatment also attenuated the UVA-induced MMP-1 activity and collagen depletion concomitant with an upregulation of Nrf2 activity and its downstream genes (GST and NQO-1). Moreover, our findings provided the in vivo relevance to the in vitro anti-photoaging effects of HRF as topical application of the extracts (10, 30 and 100 mg/cm2) and HSP (0.3, 1, and 3 mg/cm2) 1 h before UVA exposure 3 times per week for 2 weeks (a total dose of 60 J/cm2) mitigated MMP-1 upregulation, collagen loss in correlation with enhanced Nrf2 nuclear accumulation and its target protein GST and NQO-1 as well as reduced 8-hydroxy-2′-deoxyguanosine (8-OHdG) in irradiated mouse skin. Thus, our findings revealed that HRF extracts and HSP attenuated UVA-induced photoaging via upregulating Nrf2, together with their abilities to reduce ROS formation and oxidative damage. Our study concluded that the HRF and its bioactive ingredient HSP may represent potential candidates for preventing UVA-induced photoaging via restoration of redox balance.
Collapse
Affiliation(s)
- Jinapath Lohakul
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medicine Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Saowanee Jeayeng
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phetthinee Muanjumpon
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saowalak Thanachaiphiwat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinpat Tripatara
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kittipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natchagorn Lumlerdkij
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pravit Akarasereenont
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Bai GL, Wang P, Huang X, Wang ZY, Cao D, Liu C, Liu YY, Li RL, Chen AJ. Rapamycin Protects Skin Fibroblasts From UVA-Induced Photoaging by Inhibition of p53 and Phosphorylated HSP27. Front Cell Dev Biol 2021; 9:633331. [PMID: 33614662 PMCID: PMC7892968 DOI: 10.3389/fcell.2021.633331] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
Skin aging caused by UV radiation is called photoaging is characterized by skin roughness and dryness accompanied by a significant reduction of dermal collagen. Rapamycin is a macrolide immunosuppressant which has been shown to exhibit “anti-aging” effects in cells and organisms, however, its roles in the skin photoaging remains unclear. Here, we investigate the role of rapamycin and HSP27, which we have previously identified as an inhibitor of UV-induced apoptosis and senescence in HaCat cells, in a UVA-induced photoaging model of primary human dermal fibroblasts (HDFs). Results from senescence-associated beta-galactosidase (SA-β-gal) staining revealed that rapamycin significantly reduced senescence in UVA-treated HDFs. In addition, treatment with rapamycin significantly increased cell autophagy levels, decreased the expression of p53 and phosphorylated HSP27, and reduced genotoxic and oxidative cellular stress levels in UVA-induced HDFs. Knockdown of HSP27 resulted in a significant increase of MMP-1 and MMP-3 as well as a decrease in type I collagen expression. Rapamycin mitigated these effects by activation of the classical TGF-β/Smad signaling pathway and increasing the transcriptional activity of MAPK/AP-1. Taken together, these results suggest that rapamycin may potentially serve as a preventive and therapeutic agent for UVA-induced photoaging of the skin.
Collapse
Affiliation(s)
- Gen-Long Bai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Xin Huang
- Prescriptions Department, College of Traditional Chinese Medicine, Chongqing Medical University, Yuzhong, China
| | - Zi-Yue Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Di Cao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Chuan Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Yi-Yi Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ruo-Lin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ai-Jun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| |
Collapse
|
18
|
Zhang SY, Hood M, Zhang IX, Chen CL, Zhang LL, Du J. Collagen and soy peptides attenuate contractile loss from UVA damage and enhance the antioxidant capacity of dermal fibroblasts. J Cosmet Dermatol 2020; 20:2277-2286. [PMID: 33095946 DOI: 10.1111/jocd.13805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Wrinkles and extracellular matrix (ECM) loss are common signs of skin aging and are thought to be the result of damage caused by reactive oxygen species (ROS); ROS induces an imbalance between ECM degradation and production. OBJECTIVES In this study, we evaluate soy peptides (SP) and collagen peptides (CP), alone and in combination, for their ability to inhibit ROS formation and increase ECM gene expression in order to ameliorate the signs of skin aging. METHODS Using tert-Butyl hydroperoxide (t-BuOOH)-treated dermal fibroblasts, we explored the potential of CP and SP to inhibit ROS formation by flow cytometry, as well as their effect on ECM component genes by real-time quantitative PCR. In addition, we examined the effect of CP and SP on UVA irradiated fibroblasts in a 3D collagen lattice model that measured contractility. RESULTS The results showed that the combination of CP and SP synergistically reduces ROS formation. This combination also increased expression of collagen I, collagen II, elastin, and fibronectin in t-BuOOH-treated or untreated dermal fibroblasts. In the UVA-treated 3D collagen lattice model, the results show that CP and SP significantly improved fibroblast contractility when compared to UVA control (P < 0.05). CONCLUSIONS In conclusion, CP and SP attenuate the loss of contractility due to UVA damage, inhibit t-BuOOH-induced ROS formation, and improve expression of ECM component genes.
Collapse
Affiliation(s)
- Sophia Y Zhang
- Amway (China) Innovation & Science Center, Shanghai, China
| | - Molly Hood
- Nutrilite Health Institute, Ada, MI, USA
| | - Iris X Zhang
- Amway (China) Innovation & Science Center, Shanghai, China
| | - Clark L Chen
- Amway (China) Innovation & Science Center, Shanghai, China
| | - Lynn L Zhang
- Amway (China) Innovation & Science Center, Shanghai, China
| | - Jun Du
- Amway (China) Innovation & Science Center, Shanghai, China
| |
Collapse
|
19
|
Jun ES, Kim YJ, Kim HH, Park SY. Gold Nanoparticles Using Ecklonia stolonifera Protect Human Dermal Fibroblasts from UVA-Induced Senescence through Inhibiting MMP-1 and MMP-3. Mar Drugs 2020; 18:E433. [PMID: 32825040 PMCID: PMC7551933 DOI: 10.3390/md18090433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
The effect of gold nanoparticles (GNPs) synthesized in marine algae has been described in the context of skin, where they have shown potential benefit. Ecklonia stolonifera (ES) is a brown algae that belongs to the Laminariaceae family, and is widely used as a component of food and medicine due to its biological activities. However, the role of GNPs underlying cellular senescence in the protection of Ecklonia stolonifera gold nanoparticles (ES-GNPs) against UVA irradiation is less well known. Here, we investigate the antisenescence effect of ES-GNPs and the underlying mechanism in UVA-irradiated human dermal fibroblasts (HDFs). The DPPH and ABTS radical scavenging activity of ES extracts was analyzed. These analyses showed that ES extract has potent antioxidant properties. The facile and optimum synthesis of ES-GNPs was established using UV-vis spectra. The surface morphology and crystallinity of ES-GNPs were demonstrated using high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). ES-GNPs presented excellent photocatalytic activity, as shown by the photo-degradation of methylene blue and rhodamine B. A cellular senescence model was established by irradiating HDFs with UVA. UVA-irradiated HDFs exhibited increased expression of senescence-associated β-galactosidase (SA-β-galactosidase). However, pretreatment with ES-GNPs resulted in reduced SA-β-galactosidase activity in UVA-irradiated HDFs. Intracellular ROS levels and G1 arrest in UVA-irradiated HDFs were checked against the background of ES-GNP treatment to investigate the antisenescence effects of ES-GNPs. The results showed that ES-GNPs significantly inhibit UVA-induced ROS levels and G1 arrest. Importantly, ES-GNPs significantly downregulated the transcription and translation of MMP (matrix metalloproteinases)-1/-3, which regulate cellular senescence in UVA-irradiated HDFs. These findings indicate that our optimal ES-GNPs exerted an antisenescence effect on UVA-irradiated HDFs by inhibiting MMP-1/-3 expression. Collectively, we posit that ES-GNPs may potentially be used to treat photoaging of the skin.
Collapse
Affiliation(s)
- Eun-Sook Jun
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
| | - Yeong Jin Kim
- Department of Laboratory Medicine, Pusan National University Hospital, Busan 49241, Korea;
| | - Hyung-Hoi Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
- Department of Laboratory Medicine, Pusan National University Hospital, Busan 49241, Korea;
| | - Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea
| |
Collapse
|
20
|
Aryl hydrocarbon receptor signaling activation in systemic sclerosis attenuates collagen production and is a potential antifibrotic target. Int Immunopharmacol 2020; 88:106886. [PMID: 32799115 DOI: 10.1016/j.intimp.2020.106886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 11/21/2022]
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease that often leads to fibrosis of multiple organs, and there are no effective treatments. Aryl hydrocarbon receptor (AhR) is a highly evolutionarily conserved transcription factor activated by endogenous and exogenous ligands and that regulate cell proliferation, tumorigenesis and immune balance. Recently, it have reported AhR signaling may participate in fibrosis process, usually consider as a negative regulator of TGF-β. However, the detailed relationship between AhR and SSc has not been reported yet. Here we firstly found that AhR and CYP1A1 downregulated in SSc fibroblast(n = 6). The AhR ligand-Ficz negatively regulates TGF-β1, COL1A1 and α-SMA expression, also enhances the MMP-1 expression via the AhR signaling activation. Conversely the AhR antagonist CH223191 could inhibit this effect. Furthermore, the antifibrosis effect of AhR signaling activation was also confirmed in bleomycin induced scleroderma mouse model. In conclusion, AhR signaling activation balances the extracellular matrix (ECM) composition and deposition, which may provide a new sight to the pathogenesis of SSc and AhR signaling activation may be a potential therapy for SSc.
Collapse
|
21
|
Effect of UVA radiation on the Nrf2 signalling pathway in human skin cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111948. [PMID: 32679512 DOI: 10.1016/j.jphotobiol.2020.111948] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/12/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023]
Abstract
The harmful effects of low energy UVA photons (315-400 nm) are associated with the massive production of reactive oxygen species resulting in oxidative stress. In response to oxidative damage, NF-E2-related factor 2 (Nrf2) is translocated to the nucleus and drives the expression of detoxication and antioxidant enzymes. UVA's effect on Nrf2 has been quite well characterised in dermal fibroblasts. However, there is a dearth of such information for keratinocytes. This study aimed to evaluate and compare the effect of UVA radiation on the Nrf2 pathway and oxidative stress related proteins in primary human dermal fibroblasts (NHDF), epidermal keratinocytes (NHEK) and human keratinocyte cell line HaCaT. NHDF were exposed to doses of 2.5-7.5 J/cm2, NHEK and HaCaT to 10-20 J/cm2 using a solar simulator. Effects on Nrf2 translocation were evaluated after 1, 3 and 6 h and Nrf2-controlled proteins (heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione reductase (GSR), glutathione-S-transferase (GST), interleukine-6 (IL-6), and matrix metalloproteinases (MMP-1, MMP-2)) after 3, 6 and 24 h. The results showed the fastest Nrf2 translocation was in UVA-irradiated HaCaT (1 h), persisting until the subsequent time interval (3 h), while in primary keratinocytes the effect of radiation was minimal. In NHDF, UVA-stimulated Nrf2 translocation was conspicuous 3 h after UVA treatment. In NHDF, most of the studied proteins (NQO1, HO-1, GSR, GSTM1 and MMP-1) showed the highest level 24 h after UVA exposure, except for MMP-2 and IL-6 which had their highest level at a shorter time incubation interval (3 h). In NHEK, NQO1, HO-1 and GST were increased 6 h after UVA exposure, GSR and MMP-2 level was slightly below or above the control level, and MMP-1 and IL-6 increased at shorter time intervals. When comparing NHEK and HaCaT, these cells displayed contrary responses in most of the Nrf2-controlled proteins. Thus, primary keratinocytes cannot be replaced with HaCaT when studying cell signalling such as the Nrf2 driven pathway and Nrf2-controlled proteins.
Collapse
|
22
|
Wang X, Hong H, Wu J. Hen collagen hydrolysate alleviates UVA-induced damage in human dermal fibroblasts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Jiang R, Xu X, Sun Z, Wang F, Ma R, Feng K, Li T, Sun L. Protective Effects of Ginseng Proteins on Photoaging of Mouse Fibroblasts Induced by
UVA. Photochem Photobiol 2019; 96:113-123. [DOI: 10.1111/php.13156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Rui Jiang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun Jilin Province China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun Jilin Province China
| | - Zhuo Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
| | - Fei Wang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
| | - Rui Ma
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
| | - Kai Feng
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
| | - Tong Li
- Departments of Pathology The Johns Hopkins University School of Medicine Baltimore MD
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun Jilin Province China
| |
Collapse
|
24
|
Nakyai W, Tissot M, Humbert P, Grandmottet F, Viyoch J, Viennet C. Effects of Repeated UVA Irradiation on Human Skin Fibroblasts Embedded in 3D Tense Collagen Matrix. Photochem Photobiol 2018; 94:715-724. [DOI: 10.1111/php.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/28/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Wongnapa Nakyai
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry; Naresuan University; Phitsanulok Thailand
| | - Marion Tissot
- Engineering and Cutaneous Biology Laboratory (LIBC); UMR 1098 INSERM EFS BFC; University of Bourgogne Franche-Comté; Besançon France
| | - Philippe Humbert
- Engineering and Cutaneous Biology Laboratory (LIBC); UMR 1098 INSERM EFS BFC; University of Bourgogne Franche-Comté; Besançon France
- Department of Dermatology; University Hospital; Besancon France
| | - François Grandmottet
- Faculty of Agriculture Natural Resources and Environment; Naresuan University; Phitsanulok Thailand
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry; Naresuan University; Phitsanulok Thailand
| | - Céline Viennet
- Engineering and Cutaneous Biology Laboratory (LIBC); UMR 1098 INSERM EFS BFC; University of Bourgogne Franche-Comté; Besançon France
| |
Collapse
|