1
|
Fazel M, Jazani S, Scipioni L, Vallmitjana A, Zhu S, Gratton E, Digman MA, Pressé S. Building Fluorescence Lifetime Maps Photon-by-Photon by Leveraging Spatial Correlations. ACS PHOTONICS 2023; 10:3558-3569. [PMID: 38406580 PMCID: PMC10890823 DOI: 10.1021/acsphotonics.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has become a standard tool in the quantitative characterization of subcellular environments. However, quantitative FLIM analyses face several challenges. First, spatial correlations between pixels are often ignored as signal from individual pixels is analyzed independently thereby limiting spatial resolution. Second, existing methods deduce photon ratios instead of absolute lifetime maps. Next, the number of fluorophore species contributing to the signal is unknown, while excited state lifetimes with <1 ns difference are difficult to discriminate. Finally, existing analyses require high photon budgets and often cannot rigorously propagate experimental uncertainty into values over lifetime maps and number of species involved. To overcome all of these challenges simultaneously and self-consistently at once, we propose the first doubly nonparametric framework. That is, we learn the number of species (using Beta-Bernoulli process priors) and absolute maps of these fluorophore species (using Gaussian process priors) by leveraging information from pulses not leading to observed photon. We benchmark our framework using a broad range of synthetic and experimental data and demonstrate its robustness across a number of scenarios including cases where we recover lifetime differences between species as small as 0.3 ns with merely 1000 photons.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sina Jazani
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Alexander Vallmitjana
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Songning Zhu
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Steve Pressé
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States; School of Molecular Science, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Fazel M, Jazani S, Scipioni L, Vallmitjana A, Gratton E, Digman MA, Pressé S. High Resolution Fluorescence Lifetime Maps from Minimal Photon Counts. ACS PHOTONICS 2022; 9:1015-1025. [PMID: 35847830 PMCID: PMC9278809 DOI: 10.1021/acsphotonics.1c01936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) may reveal subcellular spatial lifetime maps of key molecular species. Yet, such a quantitative picture of life necessarily demands high photon budgets at every pixel under the current analysis paradigm, thereby increasing acquisition time and photodamage to the sample. Motivated by recent developments in computational statistics, we provide a direct means to update our knowledge of the lifetime maps of species of different lifetimes from direct photon arrivals, while accounting for experimental features such as arbitrary forms of the instrument response function (IRF) and exploiting information from empty laser pulses not resulting in photon detection. Our ability to construct lifetime maps holds for arbitrary lifetimes, from short lifetimes (comparable to the IRF) to lifetimes exceeding interpulse times. As our method is highly data efficient, for the same amount of data normally used to determine lifetimes and photon ratios, working within the Bayesian paradigm, we report direct blind unmixing of lifetimes with subnanosecond resolution and subpixel spatial resolution using standard raster scan FLIM images. We demonstrate our method using a wide range of simulated and experimental data.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Center
for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sina Jazani
- Center
for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Lorenzo Scipioni
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Laboratory
of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Alexander Vallmitjana
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Laboratory
of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Enrico Gratton
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Laboratory
of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Michelle A. Digman
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Laboratory
of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Steve Pressé
- Center
for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Science, Arizona State University, Tempe, Arizona 85287, United States
- E-mail:
| |
Collapse
|
3
|
Tavakoli M, Jazani S, Sgouralis I, Heo W, Ishii K, Tahara T, Pressé S. Direct Photon-by-Photon Analysis of Time-Resolved Pulsed Excitation Data using Bayesian Nonparametrics. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100234. [PMID: 34414380 PMCID: PMC8373049 DOI: 10.1016/j.xcrp.2020.100234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lifetimes of chemical species are typically estimated by either fitting time-correlated single-photon counting (TCSPC) histograms or phasor analysis from time-resolved photon arrivals. While both methods yield lifetimes in a computationally efficient manner, their performance is limited by choices made on the number of distinct chemical species contributing photons. However, the number of species is encoded in the photon arrival times collected for each illuminated spot and need not be set by hand a priori. Here, we propose a direct photon-by-photon analysis of data drawn from pulsed excitation experiments to infer, simultaneously and self-consistently, the number of species and their associated lifetimes from a few thousand photons. We do so by leveraging new mathematical tools within the Bayesian nonparametric. We benchmark our method for both simulated and experimental data for 1-4 species.
Collapse
Affiliation(s)
- Meysam Tavakoli
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Sina Jazani
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Ioannis Sgouralis
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wooseok Heo
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Steve Pressé
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Lead Contact
| |
Collapse
|
4
|
Rakshit S, Das S, Govindaraj V, Maini R, Kumar A, Datta A. Morphological Evolution of Strongly Fluorescent Water Soluble AIEEgen-Triblock Copolymer Mixed Aggregates with Shape-Dependent Cell Permeability. J Phys Chem B 2020; 124:10282-10291. [PMID: 33135898 DOI: 10.1021/acs.jpcb.0c07820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dimethyl-2,5-bis(4-methoxyphenylamino)terephthalate (DBMPT) is a water-insoluble fluorogenic molecule, which has been rendered water-soluble in physiological conditions, by the addition of triblock copolymers (TBPs), P123 (PEO19PPO69PEO19), and F127 (PEO100PPO65PEO100). DBMPT-TBP mixed aggregates, formed in the process, exhibit significant aggregation-induced enhancement of emission, with nanosecond fluorescence lifetimes. Dynamics involved in suppression of nonradiative pathways and consequent enhancement of fluorescence are followed by femtosecond transient absorption and time-resolved fluorescence spectroscopic techniques. Interestingly, shapes of the aggregates formed with the two TBPs are found to be very different, even though they differ only in the length of hydrophilic blocks. DBMPT-P123 aggregates are micrometer-sized and spherical, while DBMPT-F127 aggregates form nanorods. Evolution of their morphologies, as a function of TBP concentration, is monitored using cryo-TEM, FESEM, and fluorescence lifetime imaging microscopy. Fluorescence lifetime distribution provides useful insight into microheterogeneity in these mixed aggregates. Excellent cell permeability is observed for DBMPT-F127 nanorods, in contrast to DBMPT-P123 microspheres. These fluorescent nanorods exhibit the ability to mark lipid droplets within the cell and hence bear the promise for application in intracellular imaging.
Collapse
Affiliation(s)
- Soumyadipta Rakshit
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vinodhini Govindaraj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ratika Maini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-43. [PMID: 32406215 PMCID: PMC7219965 DOI: 10.1117/1.jbo.25.7.071203] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to distinguish the unique molecular environment of fluorophores. FLIM measures the time a fluorophore remains in an excited state before emitting a photon, and detects molecular variations of fluorophores that are not apparent with spectral techniques alone. FLIM is sensitive to multiple biomedical processes including disease progression and drug efficacy. AIM We provide an overview of FLIM principles, instrumentation, and analysis while highlighting the latest developments and biological applications. APPROACH This review covers FLIM principles and theory, including advantages over intensity-based fluorescence measurements. Fundamentals of FLIM instrumentation in time- and frequency-domains are summarized, along with recent developments. Image segmentation and analysis strategies that quantify spatial and molecular features of cellular heterogeneity are reviewed. Finally, representative applications are provided including high-resolution FLIM of cell- and organelle-level molecular changes, use of exogenous and endogenous fluorophores, and imaging protein-protein interactions with Förster resonance energy transfer (FRET). Advantages and limitations of FLIM are also discussed. CONCLUSIONS FLIM is advantageous for probing molecular environments of fluorophores to inform on fluorophore behavior that cannot be elucidated with intensity measurements alone. Development of FLIM technologies, analysis, and applications will further advance biological research and clinical assessments.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Tiffany M. Heaster
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Joe T. Sharick
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani A. Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|