1
|
McCain J, Martínez SR, Fungo F, Sakaya A, Cosa G. Two-Pronged Dormant Photosensitizer-Antibiotic Bacterial Inactivation: Mechanism, Dosage, and Cellular Evolution Visualized at the Single-Cell Level. J Am Chem Soc 2023; 145:28124-28136. [PMID: 38095965 DOI: 10.1021/jacs.3c10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Innovative therapeutic approaches are required to battle the rise of antibiotic-resistant bacterial strains. Tapping on reactive oxygen species (ROS) generation in bacteria induced by bactericidal antibiotics, here we report a two-pronged strategy for bacterial inactivation relying on the synergistic combination of a bactericidal antibiotic and newly designed dormant photosensitizers (DoPSs) that activate in the presence of ROS. Intramolecular quenching renders DoPS inert in the presence of light. ROS trapping by DoPS aborts the quenching mechanism unmasking, in equal proportions, singlet oxygen (1O2) sensitization and fluorescence emission. Juxtaposed antioxidant-prooxidant activity built within our DoPS enables (i) initial activation of a few molecules by ROS and (ii) subsequent rapid activation of all DoPS in a bacterium via a domino effect mediated by photogenerated 1O2. Bulk colony forming unit studies employing the minimum inhibitory concentration of the antibiotic illustrate rapid and selective inactivation of Escherichia coli and Pseudomonas aeruginosa only in the presence of light, antibiotic, and DoPS. Single-cell, real-time imaging studies on E. coli reveal an autocatalytic progression of DoPS activation from focal points, providing a unique amplification system for sensing. Single-cell analysis further illustrates the impact of DoPS cellular loading on the rate of DoPS activation and cell death times and on the 1O2 dosing necessary for cell death to occur. Our two-pronged therapy discriminates based on cell metabolites and has the potential to result in lower toxicity, pave the way to reduced drug resistance, and provide insightful mechanistic information about bacterial membrane response to 1O2.
Collapse
Affiliation(s)
- Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Sol R Martínez
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Florencia Fungo
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
2
|
Sosa MJ, Fonseca JL, Sakaya A, Urrutia MN, Petroselli G, Erra-Balsells R, Quindt MI, Bonesi SM, Cosa G, Vignoni M, Thomas AH. Alkylation converts riboflavin into an efficient photosensitizer of phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184155. [PMID: 37003545 DOI: 10.1016/j.bbamem.2023.184155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
A new decyl chain [-(CH2)9CH3] riboflavin conjugate has been synthesized and investigated. A nucleophilic substitution (SN2) reaction was used for coupling the alkyl chain to riboflavin (Rf), a model natural photosensitizer. As expected, the alkylated compound (decyl-Rf) is significantly more lipophilic than its precursor and efficiently intercalates within phospholipid bilayers, increasing its fluorescence quantum yield. The oxidative damage to lipid membranes photoinduced by decyl-Rf was investigated in large and giant unilamellar vesicles (LUVs and GUVs, respectively) composed of different phospholipids. Using a fluorogenic probe, fast radical formation and singlet oxygen generation was demonstrated upon UVA irradiation in vesicles containing decyl-Rf. Photosensitized formation of conjugated dienes and hydroperoxides, and membrane leakage in LUVs rich in poly-unsaturated fatty acids were also investigated. The overall assessment of the results shows that decyl-Rf is a significantly more efficient photosensitizer of lipids than its unsubstituted precursor and that the association to lipid membranes is key to trigger phospholipid oxidation. Alkylation of hydrophilic photosensitizers as a simple and general synthetic tool to obtain efficient photosensitizers of biomembranes, with potential applications, is discussed.
Collapse
Affiliation(s)
- María José Sosa
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| | - José Luis Fonseca
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina; Department of Chemistry, Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, QC, Canada
| | - Aya Sakaya
- Department of Chemistry, Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, QC, Canada
| | - María Noel Urrutia
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| | - Gabriela Petroselli
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Rosa Erra-Balsells
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Matías I Quindt
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Sergio M Bonesi
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Gonzalo Cosa
- Department of Chemistry, Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, QC, Canada
| | - Mariana Vignoni
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina.
| | - Andrés H Thomas
- Departamento de Química, Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina.
| |
Collapse
|
3
|
Naguib M, Feldman N, Zarodkiewicz P, Shropshire H, Biamis C, El-Halfawy OM, McCain J, Dezanet C, Décout JL, Chen Y, Cosa G, Valvano MA. An evolutionary conserved detoxification system for membrane lipid-derived peroxyl radicals in Gram-negative bacteria. PLoS Biol 2022; 20:e3001610. [PMID: 35580139 PMCID: PMC9113575 DOI: 10.1371/journal.pbio.3001610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
How double-membraned Gram-negative bacteria overcome lipid peroxidation is virtually unknown. Bactericidal antibiotics and superoxide ion stress stimulate the transcription of the Burkholderia cenocepacia bcnA gene that encodes a secreted lipocalin. bcnA gene orthologs are conserved in bacteria and generally linked to a conserved upstream gene encoding a cytochrome b561 membrane protein (herein named lcoA, lipocalin-associated cytochrome oxidase gene). Mutants in bcnA, lcoA, and in a gene encoding a conserved cytoplasmic aldehyde reductase (peroxidative stress-associated aldehyde reductase gene, psrA) display enhanced membrane lipid peroxidation. Compared to wild type, the levels of the peroxidation biomarker malondialdehyde (MDA) increase in the mutants upon exposure to sublethal concentrations of the bactericidal antibiotics polymyxin B and norfloxacin. Microscopy with lipid peroxidation-sensitive fluorescent probes shows that lipid peroxyl radicals accumulate at the bacterial cell poles and septum and peroxidation is associated with a redistribution of anionic phospholipids and reduced antimicrobial resistance in the mutants. We conclude that BcnA, LcoA, and PsrA are components of an evolutionary conserved, hitherto unrecognized peroxidation detoxification system that protects the bacterial cell envelope from lipid peroxyl radicals.
Collapse
Affiliation(s)
- Marwa Naguib
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nicolás Feldman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Paulina Zarodkiewicz
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Holly Shropshire
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Christina Biamis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Omar M. El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials, McGill University, Montreal, Québec, Canada
| | - Clément Dezanet
- Department of Molecular Pharmacochemistry, Université Grenoble Alpes/CNRS, Grenoble, France
| | - Jean-Luc Décout
- Department of Molecular Pharmacochemistry, Université Grenoble Alpes/CNRS, Grenoble, France
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials, McGill University, Montreal, Québec, Canada
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Sakaya A, Durantini AM, Gidi Y, Šverko T, Wieczny V, McCain J, Cosa G. Fluorescence-Amplified Detection of Redox Turnovers in Supported Lipid Bilayers Illuminates Redox Processes of α-Tocopherol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13872-13882. [PMID: 35266688 DOI: 10.1021/acsami.1c23931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron-transfer processes in lipid membranes are key to biological functions, yet challenging to study because of the intrinsic heterogeneity of the systems. Here, we report spectro-electrochemical measurements on indium tin oxide-supported lipid bilayers toward the selective induction and sensing of redox processes in membranes. Working at neutral pH with a fluorogenic α-tocopherol analogue, the dynamics of the two-electron oxidation of the chromanol to a chromanone and the rapid thermal decay of the latter to a chromoquinone are recorded as a rapid surge and drop in intensity, respectively. Continuous voltage cycling reveals rapid chromoquinone two-electron, two-proton reduction to dihydrochromoquinone at negative bias, followed by slow regeneration of the former at positive bias. The kinetic parameters of these different transitions are readily obtained as a function of applied potentials. The sensitivity and selectivity afforded by the reported method enables monitoring signals equivalent to femtoampere currents with a high signal-to-background ratio. The study provides a new method to monitor membrane redox processes with high sensitivity and minimal concentrations and unravels key dynamic aspects of α-tocopherol redox chemistry.
Collapse
Affiliation(s)
- Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Andrés M Durantini
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Tara Šverko
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Vincent Wieczny
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| |
Collapse
|
5
|
Telegin FY, Marfin YS. New insights into quantifying the solvatochromism of BODIPY based fluorescent probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119683. [PMID: 33799189 DOI: 10.1016/j.saa.2021.119683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
A simple semiempiric phenomenological approach is developed for quantifying the solvent effect on the absorption and emission properties of BODIPYs. It is based on a new rule describing the linear relationship between the difference (Stokes shift) and the sum (double Gibbs free energy of electron transfer) for absorption and emission wavenumbers derived from a combination of solvent functions of Liptay theory. This rule is correspondent to changes of dipole moments in the ground and excited states. High reliability and advantages of the developed approach in comparison with traditional methods of the analysis of the solvatochromism based on Dimroth-Reichard and Lippert-Mataga solvent scales are illustrated for selected BODIPYs exhibiting positive, negative, and near-zero solvatochromism.
Collapse
Affiliation(s)
- Felix Y Telegin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology 7, Sheremetevsky Ave, Ivanovo 153000, Russia.
| | - Yuriy S Marfin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology 7, Sheremetevsky Ave, Ivanovo 153000, Russia
| |
Collapse
|
6
|
Stasyuk OA, Stasyuk AJ, Solà M, Voityuk AA. Photoinduced electron transfer in nano-Saturn complexes of fullerene. Phys Chem Chem Phys 2021; 23:2126-2133. [PMID: 33437974 DOI: 10.1039/d0cp05919f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The photoinduced electron transfer is studied computationally in several Saturn-shaped inclusion complexes of carbo-aromatic rings and C60 fullerene - C72⊃C60, C96⊃C60, C120⊃C60, and C168⊃C60. Analysis of their structural and electronic properties shows that the charge separation process is efficient in C120⊃C60 and C168⊃C60 where the host molecule resembles the conjugated [24]circulene unit. In contrast, the electron transfer is not feasible in the complexes of the oligophenylene-based rings C72⊃C60 and C96⊃C60.
Collapse
Affiliation(s)
- O A Stasyuk
- Institut de Química Computacional and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | | | | | | |
Collapse
|
7
|
Foret MK, Lincoln R, Do Carmo S, Cuello AC, Cosa G. Connecting the "Dots": From Free Radical Lipid Autoxidation to Cell Pathology and Disease. Chem Rev 2020; 120:12757-12787. [PMID: 33211489 DOI: 10.1021/acs.chemrev.0c00761] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of lipid peroxidation in biology and medicine is rapidly evolving, as it is increasingly implicated in various diseases but also recognized as a key part of normal cell function, signaling, and death (ferroptosis). Not surprisingly, the root and consequences of lipid peroxidation have garnered increasing attention from multiple disciplines in recent years. Here we "connect the dots" between the fundamental chemistry underpinning the cascade reactions of lipid peroxidation (enzymatic or free radical), the reactive nature of the products formed (lipid-derived electrophiles), and the biological targets and mechanisms associated with these products that culminate in cellular responses. We additionally bring light to the use of highly sensitive, fluorescence-based methodologies. Stemming from the foundational concepts in chemistry and biology, these methodologies enable visualizing and quantifying each reaction in the cascade in a cellular and ultimately tissue context, toward deciphering the connections between the chemistry and physiology of lipid peroxidation. The review offers a platform in which the chemistry and biomedical research communities can access a comprehensive summary of fundamental concepts regarding lipid peroxidation, experimental tools for the study of such processes, as well as the recent discoveries by leading investigators with an emphasis on significant open questions.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Richard Lincoln
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
8
|
Martínez SR, Durantini AM, Becerra MC, Cosa G. Real-Time Single-Cell Imaging Reveals Accelerating Lipid Peroxyl Radical Formation in Escherichia coli Triggered by a Fluoroquinolone Antibiotic. ACS Infect Dis 2020; 6:2468-2477. [PMID: 32786297 DOI: 10.1021/acsinfecdis.0c00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of reactive oxygen species (ROS) induced by bactericidal antibiotics has been associated with a common, nonspecific mechanism of cellular death. Herein, we report real-time single-cell fluorescence studies on Escherichia coli stained with a fluorogenic probe for lipid peroxyl radicals showing the generation of this form of ROS when exposed to the minimum inhibitory concentration (MIC) and 10× MIC of the fluoroquinolone antibiotic ciprofloxacin (3 and 30 μM, respectively). Single-cell intensity-time trajectories show an induction period followed by an accelerating phase for cells treated with antibiotic, where initial and maximum intensity achieved following 3.5 h of incubation with antibiotic showed dose-dependent average values. A large fraction of bacteria remains viable after the studies, indicating ROS formation is occurring a priori of cell death. Punctate structures are observed, consistent with membrane blebbing. The addition of a membrane embedding lipid peroxyl radical scavenger, an α-tocopherol analogue, to the media increased the MIC of ciprofloxacin. Lipid peroxyl radical formation precedes E. coli cell death and may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Altogether, our work illustrates that lipid peroxidation is caused by ciprofloxacin in E. coli and suppressed by α-tocopherol analogues. Lipid peroxidation may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Our work provides a methodology to assess antibiotic-induced membrane peroxidation at the single-cell level; this methodology provides opportunities to explore the scope and nature of lipid peroxidation in antibiotic-induced cell lethality.
Collapse
Affiliation(s)
- Sol R. Martínez
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- IMBIV-CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba X5000, Argentina
| | - Andrés M. Durantini
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - María C. Becerra
- IMBIV-CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba X5000, Argentina
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
9
|
Ready Access to Molecular Rotors Based on Boron Dipyrromethene Dyes-Coumarin Dyads Featuring Broadband Absorption. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25040781. [PMID: 32059435 PMCID: PMC7070740 DOI: 10.3390/molecules25040781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 01/01/2023]
Abstract
Herein we report on a straightforward access method for boron dipyrromethene dyes (BODIPYs)-coumarin hybrids linked through their respective 8- and 6- positions, with wide functionalization of the coumarin fragment, using salicylaldehyde as a versatile building block. The computationally-assisted photophysical study unveils broadband absorption upon proper functionalization of the coumarin, as well as the key role of the conformational freedom of the coumarin appended at the meso position of the BODIPY. Such free motion almost suppresses the fluorescence signal, but enables us to apply these dyads as molecular rotors to monitor the surrounding microviscosity.
Collapse
|
10
|
Kusio J, Sitkowska K, Konopko A, Litwinienko G. Hydroxycinnamyl Derived BODIPY as a Lipophilic Fluorescence Probe for Peroxyl Radicals. Antioxidants (Basel) 2020; 9:antiox9010088. [PMID: 31968662 PMCID: PMC7022944 DOI: 10.3390/antiox9010088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Herein, we describe the synthesis of a fluorescent probe NB-2 and its use for the detection of peroxyl radicals. This probe is composed of two receptor segments (4-hydroxycinnamyl moieties) sensitive towards peroxyl radicals that are conjugated with a fluorescent reporter, dipyrrometheneboron difluoride (BODIPY), whose emission changes depend on the oxidation state of the receptors. The measurement of the rate of peroxidation of methyl linoleate in a micellar system in the presence of 1.0 µM NB-2 confirmed its ability to trap lipid peroxyl radicals with the rate constant kinh = 1000 M−1·s−1, which is ten-fold smaller than for pentamethylchromanol (an analog of α-tocopherol). The reaction of NB-2 with peroxyl radicals was further studied via fluorescence measurements in methanol, with α,α′-azobisisobutyronitrile (AIBN) used as a source of radicals generated by photolysis or thermolysis, and in the micellar system at pH 7.4, with 2,2′-azobis(2-amidinopropane) (ABAP) used as a thermal source of the radicals. The reaction of NB-2 receptors with peroxyl radicals manifests itself by the strong increase of a fluorescence with a maximum at 612–616 nm, with a 14-fold enhancement of emission in methanol and a 4-fold enhancement in the micelles, as compared to the unoxidized probe. Our preliminary results indicate that NB-2 behaves as a “switch on” fluorescent probe that is suitable for sensing peroxyl radicals in an organic lipid environment and in bi-phasic dispersed lipid systems.
Collapse
Affiliation(s)
- Jaroslaw Kusio
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.K.); (A.K.)
| | - Kaja Sitkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.K.); (A.K.)
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: (K.S.); (G.L.)
| | - Adrian Konopko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.K.); (A.K.)
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Grzegorz Litwinienko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.K.); (A.K.)
- Correspondence: (K.S.); (G.L.)
| |
Collapse
|
11
|
Deo C, Sheu SH, Seo J, Clapham DE, Lavis LD. Isomeric Tuning Yields Bright and Targetable Red Ca2+ Indicators. J Am Chem Soc 2019; 141:13734-13738. [DOI: 10.1021/jacs.9b06092] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Claire Deo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Shu-Hsien Sheu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Jinyoung Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - David E. Clapham
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| |
Collapse
|
12
|
Lincoln R, Van Kessel ATM, Zhang W, Cosa G. A dormant BODIPY-acrolein singlet oxygen photosensitizer intracellularly activated upon adduct formation with cysteine residues. Photochem Photobiol Sci 2019; 18:2003-2011. [PMID: 31268087 DOI: 10.1039/c9pp00162j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the activatable photosensitizer BromoAcroB, a brominated BODIPY dye incorporating a reactive acrolein warhead. The acrolein moiety serves as an intramolecular switch, deactivating the BODIPY dye in its singlet and triplet excited states via internal conversion. Thiolate addition to this moiety disables the intramolecular quenching mechanism restoring the photosensitizing properties of the parent dye, characterized by a quantum yield of singlet oxygen photosensitization of 0.69 ± 0.02. In cell cultures, and upon thiol adduct formation, BromoAcroB induced light-dependent cell death in MRC-5 and HeLa cell lines. Using fluorescence microscopy and upon measuring the low yet non-negligible emission of the activated compound, we show that the phototoxicity of the dormant photosensitizer correlated with the quantity of BromoAcroB adducts generated. BromoAcroB thus serves as a dormant photosensitizer sensitive to intracellular electrophile response. Our results highlight the effective control of a triplet state process by modulation of an unsaturated moiety on the BODIPY scaffold and underscore the mechanistic opportunities arising for controlled singlet oxygen production in cells specifically sensitive to electrophile stress.
Collapse
Affiliation(s)
- Richard Lincoln
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | | | | | | |
Collapse
|