1
|
Ciarlantini C, Francolini I, Silvestro I, Mariano A, d'Abusco AS, Piozzi A. Design of bioactive and biomimetic scaffolds based on chitosan-alginate polyelectrolyte complexes for tissue engineering. Carbohydr Polym 2024; 327:121684. [PMID: 38171693 DOI: 10.1016/j.carbpol.2023.121684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
The replacement and regeneration of biological tissues by fabricating three-dimensional functionalized constructs that can improve material interaction with cells is an important challenge of tissue engineering. In this study, bioactive and biomimetic scaffolds based on chitosan-alginate polyelectrolyte complexes (PECs) were fabricated by freeze-drying method and then crosslinked with CaCl2. Various chitosan-alginate (CS-AL) molar ratios were used to obtain PECs with different structural and mechanical properties. The CS1-AL2.3 scaffold showed to possess the best mechanical properties (8 MPa) and good pore morphology with an average size of 100-150 μm. After the crosslinking process, a less porous structure but with higher elastic modulus (30 MPa) was obtained. To make matrix bioactive and biomimetic, the CS1-AL2.3 system was first functionalized with 3,4-dihydroxyhydrocinnamic acid (HCAF) and then with PySO3 or Heparin to introduce groups/molecules mimicking the extracellular matrix. While the antioxidant properties of the scaffolds containing HCAF improved by 3 orders of magnitude, compared to the non-functionalized matrix, the introduction of sulfonic groups into the bioactive scaffold made the structure more porous and hydrophilic with respect to the heparinized one also favoring the penetration and proliferation of fibroblasts into the scaffold. These results indicate the potential of these novel systems for tissue engineering.
Collapse
Affiliation(s)
- Clarissa Ciarlantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Ilaria Silvestro
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Le Q, Zhang Z, Sun D, Cui Q, Yang X, Hassan AE. Anti-inflammatory activities of two new deoxygenated N-acetyl glucosamines in lipopolysaccharide-activated mouse macrophage RAW264.7 cells. Heliyon 2023; 9:e15769. [PMID: 37159698 PMCID: PMC10163627 DOI: 10.1016/j.heliyon.2023.e15769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Background Glucosamine and N-acetyl-glucosamine (NAG) are amino sugars found in human extracellular matrix with previously described anti-inflammatory effects. Despite mixed results from clinical studies, these molecules have been used extensively in supplements. Objective We investigated the anti-inflammatory properties of two synthesized derivatives of N-acetyl-glucosamine (NAG), bi-deoxy-N-acetyl-glucosamine (BNAG) 1 and 2. Methods Using mouse macrophage RAW 264.7 cells with lipopolysaccharide (LPS) to induce inflammation, the effects of NAG, BNAG 1, and BNAG 2 on the expression of IL-6, IL-1β, inducible nitric oxide synthase (iNOS) and COX-2 were studied using ELISA, Western blot and quantitative RT-PCR. Cell toxicity and nitric oxide (NO) production were evaluated using WST-1 assay and the Griess reagent, respectively. Results Among the three tested compounds, BNAG1 shows the highest inhibition of iNOS, IL-6, TNF α and IL-1β expression and NO production. All three tested compounds show slight inhibition on cell proliferation of RAW 264.7 cells, except that BNAG1 displays a remarkable toxicity at the tested maximum dose of 5 mM. Conclusion BNAG 1 and 2 exhibit notable anti-inflammatory effects compared to the parent NAG molecule.
Collapse
Affiliation(s)
- Quang Le
- Dept of Orthopaedic Surgery, University of Virginia, 22903, USA
| | - Zhichang Zhang
- Dept of Orthopaedic Surgery, University of Virginia, 22903, USA
- Dept of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Wehui, 453100, Henan, China
| | - Daniel Sun
- Dept of Orthopaedic Surgery, University of Virginia, 22903, USA
| | - Quanjun Cui
- Dept of Orthopaedic Surgery, University of Virginia, 22903, USA
| | - Xinlin Yang
- Dept of Orthopaedic Surgery, University of Virginia, 22903, USA
- Corresponding author. Department of Orthopaedic Surgery, University of Virginia, School of Medicine, 450 Ray C. Hunt Drive, Charlottesville, VA 22908, USA.
| | - Ameer E. Hassan
- Department of Neuroscience, Valley Baptist Medical Center, 78550, USA
- Corresponding author. Department of Neuroscience, Valley Baptist Medical Center, 2101 Pease St, Harlingen, TX, 78550, USA.
| |
Collapse
|
3
|
Chiloeches A, Fernández-García R, Fernández-García M, Mariano A, Bigioni I, Scotto d'Abusco A, Echeverría C, Muñoz-Bonilla A. PLA and PBAT-Based Electrospun Fibers Functionalized with Antibacterial Bio-Based Polymers. Macromol Biosci 2023; 23:e2200401. [PMID: 36443243 DOI: 10.1002/mabi.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Indexed: 11/30/2022]
Abstract
Antimicrobial fibers based on biodegradable polymers, poly(lactic acid) (PLA), and poly(butylene adipate-co-terephthalate) (PBAT) are prepared by electrospinning. For this purpose, a biodegradable/bio-based polyitaconate containing azoles groups (PTTI) is incorporated at 10 wt.% into the electrospinning formulations. The resulting fibers functionalized with azole moieties are uniform and free of beads. Then, the accessible azole groups are subjected to N-alkylation, treatment that provides cationic azolium groups with antibacterial activity at the surface of fibers. The positive charge density, roughness, and wettability of the cationic fibers are evaluated and compared with flat films. It is confirmed that these parameters exert an important effect on the antimicrobial properties, as well as the length of the alkylating agent and the hydrophobicity of the matrix. The quaternized PLA/PTTI fibers exhibit the highest efficiency against the tested bacteria, yielding a 4-Log reduction against S. aureus and 1.7-Log against MRSA. Then, biocompatibility and bioactivity of the fibers are evaluated in terms of adhesion, morphology and viability of fibroblasts. The results show no cytotoxic effect of the samples, however, a cytostatic effect is appreciated, which is ascribed to the strong electrostatic interactions between the positive charge at the fiber surface and the negative charge of the cell membranes.
Collapse
Affiliation(s)
- A Chiloeches
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), C/ Bravo Murillo, 38, Madrid, 28015, Spain
| | - R Fernández-García
- Hospital Universitario de Móstoles C/ Dr. Luis Montes, s/n, Móstoles, Madrid, 28935, Spain
| | - M Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - A Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - I Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - A Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - C Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - A Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Chen Y, Sun X, Peng Y, Eichenbaum JV, Ren L, Liu Y. Effects of Different Radiation Sources on the Performance of Collagen-Based Corneal Repair Materials and Macrophage Polarization. ACS OMEGA 2022; 7:22559-22566. [PMID: 35811904 PMCID: PMC9260758 DOI: 10.1021/acsomega.2c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Owing to the lack of donor corneas, there is an urgent need for suitable corneal substitutes. As the main component of the corneal stroma, collagen has great advantages as a corneal repair material. If there are microorganisms such as bacteria in the corneal repair material, it may induce postoperative infection, causing the failure of corneal transplantation. Therefore, irradiation, as a common sterilization method, is often used to control the microorganisms in the material. However, it has not been reported which type of radiation source and what doses can sterilize more effectively without affecting the properties of collagen-based corneal repair materials (CCRMs) and have a positive impact on macrophage polarization. In this study, three different radiation sources of ultraviolet, cobalt-60, and electron beam at four different doses of 2, 5, 8, and 10 kGy were used to irradiate CCRMs. The swelling, stretching, transmittance, and degradation of the irradiated CCRMs were characterized, and the proliferation of human corneal epithelial cells on the irradiated CCRMs was characterized using the CCK8 kit. The results showed that low dose (<5 kGy) of radiation had little effect on the performance of CCRMs. Three irradiation methods with less influence were selected for the further study on RAW264.7 macrophage polarization. The results indicated that CCRMs treated with UV could downregulate the expression of pro-inflammatory related genes and upregulate the expression of anti-inflammatory genes in macrophages, which indicated that UV irradiation is a beneficial process for the preparation of CCRMs.
Collapse
Affiliation(s)
- Yi Chen
- Guangzhou
Redsun Gas Appliance Co., Ltd., Guangzhou 510460, P. R.
China
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510006, P. R. China
| | - Xiaomin Sun
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510006, P. R. China
| | - Yuehai Peng
- School
of Biological Science and Engineering, South
China University of Technology, Guangzhou 510006, P. R. China
| | - James Valenti Eichenbaum
- Viterbi
School of Engineering, University of Southern
California, Los
Angeles, California 90089, United States
| | - Li Ren
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510006, P. R. China
| | - Yanchun Liu
- Guangzhou
Redsun Gas Appliance Co., Ltd., Guangzhou 510460, P. R.
China
| |
Collapse
|
5
|
Pheomelanin Effect on UVB Radiation-Induced Oxidation/Nitration of l-Tyrosine. Int J Mol Sci 2021; 23:ijms23010267. [PMID: 35008693 PMCID: PMC8745751 DOI: 10.3390/ijms23010267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022] Open
Abstract
Pheomelanin is a natural yellow-reddish sulfur-containing pigment derived from tyrosinase-catalyzed oxidation of tyrosine in presence of cysteine. Generally, the formation of melanin pigments is a protective response against the damaging effects of UV radiation in skin. However, pheomelanin, like other photosensitizing substances, can trigger, following exposure to UV radiation, photochemical reactions capable of modifying and damaging cellular components. The photoproperties of this natural pigment have been studied by analyzing pheomelanin effect on oxidation/nitration of tyrosine induced by UVB radiation at different pH values and in presence of iron ions. Photoproperties of pheomelanin can be modulated by various experimental conditions, ranging from the photoprotection to the triggering of potentially damaging photochemical reactions. The study of the photomodification of l-Tyrosine in the presence of the natural pigment pheomelanin has a special relevance, since this tyrosine oxidation/nitration pathway can potentially occur in vivo in tissues exposed to sunlight and play a role in the mechanisms of tissue damage induced by UV radiation.
Collapse
|
6
|
Nanostructured TiC Layer is Highly Suitable Surface for Adhesion, Proliferation and Spreading of Cells. CONDENSED MATTER 2020. [DOI: 10.3390/condmat5020029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell culture is usually performed in 2D polymer surfaces; however, several studies are conducted with the aim to screen functional coating molecules to find substrates more suitable for cell adhesion and proliferation. The aim of this manuscript is to compare the cell adhesion and cytoskeleton organization of different cell types on different surfaces. Human primary fibroblasts, chondrocytes and osteoblasts isolated from patients undergoing surgery were seeded on polystyrene, poly-d-lysine-coated glass and titanium carbide slides and left to grow for several days. Then their cytoskeleton was analyzed, both by staining cells with phalloidin, which highlights actin fibers, and using Atomic Force Microscopy. We also monitored the production of Fibroblast Growth Factor-2, Bone Morphogenetic Protein-2 and Osteocalcin, using ELISA, and we highlighted production of Collagen type I in fibroblasts and osteoblasts and Collagen type II in chondrocytes by immunofluorescences. Fibroblasts, chondrocytes and osteoblasts showed both an improved proliferative activity and a good adhesion ability when cultured on titanium carbide slides, compared to polystyrene and poly-d-lysine-coated glass. In conclusion, we propose titanium carbide as a suitable surface to cultivate cells such as fibroblasts, chondrocytes and osteoblasts, allowing the preservation of their differentiated state and good adhesion properties.
Collapse
|
7
|
Hyaluronic Acid Reduces Bacterial Fouling and Promotes Fibroblasts' Adhesion onto Chitosan 2D-Wound Dressings. Int J Mol Sci 2020; 21:ijms21062070. [PMID: 32197295 PMCID: PMC7139607 DOI: 10.3390/ijms21062070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Wound healing is a dynamic process that can be seriously delayed by many factors including infectious complications. The development of dressings with intrinsic wound healing activity and/or releasing bioactive compounds may help with addressing such an issue. In this study, hyaluronic acid (HA) at different percentages (1–35%) was used to modify chitosan (CS) biological and physico-chemical properties in order to obtain 2D-matrices able to promote healing and protect from infection. HA incorporation in the CS matrix decreased film transparency and homogeneity, but improved film water uptake and surface wettability. The water vapor transmission rate (WVTR) increased up to a 5% HA content, where it reached the highest value (672 g/m2 day), and decreased for higher HA contents. At all of the tested HA concentrations, HA affected mechanical properties providing matrices more flexible than pure CS with benefit for wound care. Pure CS films permitted S. epidermidis adhesion and biofilm formation. That was not true for CS/HA matrices, where HA at concentrations equal to or greater than 5% was able to avoid S. epidermidis adhesion. Fibroblasts adhesion also took benefit from the HA presence in the film, especially at 5% content, where the best adhesion and proliferation was found.
Collapse
|