1
|
Tevonyan LL, Bazhulina NP, Kaluzhny DN. Enhancement of intrinsic guanine fluorescence by protonation in DNA of various structures. Biochimie 2024; 222:101-108. [PMID: 38447859 DOI: 10.1016/j.biochi.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Understanding the diversity of DNA structure and functions in biology requires tools to study this biomolecule selectively and thoroughly. Fluorescence methods are powerful technique for non-invasive research. Due to the low quantum yield, the intrinsic fluorescence of nucleotides has not been considered for use in the detection and differentiation of nucleic acid bases. Here, we have studied the influence of protonation of nucleotides on their fluorescence properties. We show that protonation of ATP and GTP leads to enhanced intrinsic fluorescence. Fluorescence enhancement at acidic pH has been observed for double-stranded DNA and single-stranded oligonucleotides. The formation of G4 secondary structures apparently protected certain nucleotides from protonation, resulting in less pronounced fluorescence enhancement. Furthermore, acid-induced depurination under protonation was less noticeable in G4 structures than in double-stranded and single-stranded DNA. We show that changes in the intrinsic fluorescence of guanine can be used as a sensitive sensor for changes in the structure of the DNA and for the protonation of specific nucleotides.
Collapse
Affiliation(s)
- Liana L Tevonyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, 141701, Moscow Region, Russia
| | - Natalia P Bazhulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991, Moscow, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991, Moscow, Russia.
| |
Collapse
|
2
|
Markovitsi D. On the Use of the Intrinsic DNA Fluorescence for Monitoring Its Damage: A Contribution from Fundamental Studies. ACS OMEGA 2024; 9:26826-26837. [PMID: 38947837 PMCID: PMC11209687 DOI: 10.1021/acsomega.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
The assessment of DNA damage by means of appropriate fluorescent probes is widely spread. In the specific case of UV-induced damage, it has been suggested to use the emission of dimeric photoproducts as an internal indicator for the efficacy of spermicidal lamps. However, in the light of fundamental studies on the UV-induced processes, outlined in this review, this is not straightforward. It is by now well established that, in addition to photodimers formed via an electronic excited state, photoionization also takes place with comparable or higher quantum yields, depending on the irradiation wavelength. Among the multitude of final lesions, some have been fully characterized, but others remain unknown; some of them may emit, while others go undetected upon monitoring fluorescence, the result being strongly dependent on both the irradiation and the excitation wavelength. In contrast, the fluorescence of undamaged nucleobases associated with emission from ππ* states, localized or excitonic, appearing at wavelengths shorter than 330 nm is worthy of being explored to this end. Despite its low quantum yield, it is readily detected nowadays. Its intensity decreases due to the disappearance of the reacting nucleobases and the loss of exciton coherence provoked by the presence of lesions, independently of their type. Thus, it could potentially provide valuable information about the DNA damage induced, not only by UV radiation but also by other sanitizing or therapeutic agents.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- Université Paris-Saclay, CNRS,
Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
3
|
Markovitsi D. Processes triggered in guanine quadruplexes by direct absorption of UV radiation: From fundamental studies toward optoelectronic biosensors. Photochem Photobiol 2024; 100:262-274. [PMID: 37365765 DOI: 10.1111/php.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Guanine quadruplexes (GQs) are four-stranded DNA/RNA structures exhibiting an important polymorphism. During the past two decades, their study by time-resolved spectroscopy, from femtoseconds to milliseconds, associated to computational methods, shed light on the primary processes occurring when they absorb UV radiation. Quite recently, their utilization in label-free and dye-free biosensors was explored by a few groups. In view of such developments, this review discusses the outcomes of the fundamental studies that could contribute to the design of future optoelectronic biosensors using fluorescence or charge carriers stemming directly from GQs, without mediation of other molecules, as it is the currently the case. It explains how the excited state relaxation influences both the fluorescence intensity and the efficiency of low-energy photoionization, occurring via a complex mechanism. The corresponding quantum yields, determined with excitation at 266/267 nm, fall in the range of (3.0-9.5) × 10-4 and (3.2-9.2) × 10-3 , respectively. These values, significantly higher than the corresponding values found for duplexes, depend strongly on certain structural factors (molecularity, metal cations, peripheral bases, number of tetrads …) which intervene in the relaxation process. Accordingly, these features can be tuned to optimize the desired signal.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- CNRS, Institut de Chimie Physique, UMR8000, Université Paris-Saclay, Orsay, France
| |
Collapse
|
4
|
Megušar P, Miklavčič R, Korenč M, Ličen J, Vodopivec T, Černigoj U, Štrancar A, Sekirnik R. Scalable multimodal weak anion exchange chromatographic purification for stable mRNA drug substance. Electrophoresis 2023; 44:1978-1988. [PMID: 37828276 DOI: 10.1002/elps.202300106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Messenger RNA (mRNA) has emerged as a modality with immense therapeutic potential. Recent innovations in production process of mRNA call for procedures to isolate pure mRNA drug substance (DS) with high yield, high capacity, scalability, and compatibility with GMP production systems. Novel RNA modalities, such as circular RNA (circRNA), have further driven the need for non-affinity capture possibilities which are already widely used in the biopharmaceutical industry, for example, in monoclonal antibody processing. The principle that multimodal ion exchange/hydrogen bonding chromatography can be used to separate mRNA from in vitro transcription components has recently been demonstrated. Here, we apply and refine this approach to be suitable for scalable purification of multiple mRNA constructs with sufficient yields, purity, and stability, for use in mRNA production process. Binding capacity of the PrimaS-modified monolithic chromatographic column for mRNA enabled up to 7 mg/mL product isolation in a single chromatographic run, with 98% recovery and room temperature stability of the eGFP mRNA demonstrated for up to 28 days. This approach is independent of construct size or the presence of polyadenylic acid tail and is applicable for capture of a wide variety of RNAs, including mRNA, self-amplifying RNA, circRNA, and with optimization also smaller RNAs such as transfer RNA and others.
Collapse
Affiliation(s)
| | - Rok Miklavčič
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Matevž Korenč
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Jure Ličen
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | | | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Rok Sekirnik
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| |
Collapse
|
5
|
Kumar A, Sevilla MD. Proton-Transfer Reactions in One-Electron-Oxidized G-Quadruplexes: A Density Functional Theory Study. J Phys Chem B 2022; 126:1483-1491. [PMID: 35152699 PMCID: PMC8881324 DOI: 10.1021/acs.jpcb.1c10529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, G-quadruplexes (Gq) formed in B-DNA as secondary structures are found to be important therapeutic targets and material for developing nanodevices. Gq are guanine-rich and thus susceptible to oxidative damage by producing short-lived intermediate radicals via proton-transfer reactions. Understanding the mechanisms of radical formation in Gq is of fundamental interest to understand the early stages of DNA damage. Herein, we used density functional theory including aqueous phase (ωB97XD-PCM/6-31++G**) and considered single layer of Gq [G-quartets (G4): association of four guanines in a cyclic Hoogsteen hydrogen-bonded arrangement (Scheme 1)] to unravel the mechanisms of formation of intermediates by calculating the relative Gibbs free energies and spin density distributions of one-electron-oxidized G4 and its various proton-transfer states: G•+, G(N1-H)•, G(N2-H')•, G(N2-H″)•, G(N1-H)•-(H+O6)G, and G(N2-H)•-(H+N7)G. The present calculation predicts the formation of G(N2-H)•-(H+N7)G, which is only ca. 0.8 kcal/mol higher in energy than the initially formed G•+. The formation of G(N2-H)•-(H+N7)G plays a key role in explaining the formation of 8-OG along with G(N1-H)• formation via tautomerization from G(N2-H)•, as proposed recently.
Collapse
Affiliation(s)
- Anil Kumar
- Corresponding Author: . Tel: +1 248 370 2327, . Tel: +1 248 370 2328
| | | |
Collapse
|
6
|
Balanikas E, Martinez-Fernandez L, Baldacchino G, Markovitsi D. Electron Holes in G-Quadruplexes: The Role of Adenine Ending Groups. Int J Mol Sci 2021; 22:ijms222413436. [PMID: 34948235 PMCID: PMC8704496 DOI: 10.3390/ijms222413436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The study deals with four-stranded DNA structures (G-Quadruplexes), known to undergo ionization upon direct absorption of low-energy UV photons. Combining quantum chemistry calculations and time-resolved absorption spectroscopy with 266 nm excitation, it focuses on the electron holes generated in tetramolecular systems with adenine groups at the ends. Our computations show that the electron hole is placed in a single guanine site, whose location depends on the position of the adenines at the 3' or 5' ends. This position also affects significantly the electronic absorption spectrum of (G+)● radical cations. Their decay is highly anisotropic, composed of a fast process (<2 µs), followed by a slower one occurring in ~20 µs. On the one hand, they undergo deprotonation to (G-H2)● radicals and, on the other, they give rise to a reaction product absorbing in the 300-500 nm spectral domain.
Collapse
Affiliation(s)
- Evangelos Balanikas
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
| | - Lara Martinez-Fernandez
- Departamento de Química, Modúlo 13, Facultad de Ciencias and IADCHEM (Institute for Advanced Research in Chemistry), Campus de Excelencia UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Correspondence: (L.M.-F.); or (D.M.)
| | - Gérard Baldacchino
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
- Correspondence: (L.M.-F.); or (D.M.)
| |
Collapse
|