1
|
Burakova LP, Ivanisenko NV, Rukosueva NV, Ivanisenko VA, Vysotski ES. Design of Ctenophore Ca 2+-Regulated Photoprotein Berovin Capable of Being Converted into Active Protein Under Physiological Conditions: Computational and Experimental Approaches. Life (Basel) 2024; 14:1508. [PMID: 39598306 PMCID: PMC11595719 DOI: 10.3390/life14111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Here, we describe (1) the AlphaFold-based structural modeling approach to identify amino acids of the photoprotein berovin that are crucial for coelenterazine binding, and (2) the production and characterization of berovin mutants with substitutions of the identified residues regarding their effects on the ability to form an active photoprotein under physiological conditions and stability to light irradiation. The combination of mutations K90M, N107S, and W103F is demonstrated to cause a shift of optimal conditions for the conversion of apo-berovin into active photoprotein towards near-neutral pH and low ionic strength, and to reduce the sensitivity of active berovin to light. According to the berovin spatial structure model, these residues are found in close proximity to the 6-(p-hydroxy)-phenyl group of the coelenterazine peroxyanion.
Collapse
Affiliation(s)
- Ludmila P. Burakova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia;
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia;
| | - Nikita V. Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.V.I.); (V.A.I.)
- Novosibirsk State University, Novosibirsk 630090, Russia
- AIRI, Moscow 123112, Russia
| | - Natalia V. Rukosueva
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia;
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.V.I.); (V.A.I.)
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Eugene S. Vysotski
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia;
| |
Collapse
|
2
|
Natashin PV, Burakova LP, Kovaleva MI, Shevtsov MB, Dmitrieva DA, Eremeeva EV, Markova SV, Mishin AV, Borshchevskiy VI, Vysotski ES. The Role of Tyr-His-Trp Triad and Water Molecule Near the N1-Atom of 2-Hydroperoxycoelenterazine in Bioluminescence of Hydromedusan Photoproteins: Structural and Mutagenesis Study. Int J Mol Sci 2023; 24:ijms24076869. [PMID: 37047842 PMCID: PMC10095345 DOI: 10.3390/ijms24076869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.
Collapse
Affiliation(s)
- Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Margarita I Kovaleva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Mikhail B Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| |
Collapse
|
3
|
Natashin PV, Eremeeva EV, Shevtsov MB, Kovaleva MI, Bukhdruker SS, Dmitrieva DA, Gulnov DV, Nemtseva EV, Gordeliy VI, Mishin AV, Borshchevskiy VI, Vysotski ES. Crystal structure of semi-synthetic obelin-v after calcium induced bioluminescence implies coelenteramine as the main reaction product. Sci Rep 2022; 12:19613. [PMID: 36379962 PMCID: PMC9666459 DOI: 10.1038/s41598-022-24117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Coelenterazine-v (CTZ-v), a synthetic vinylene-bridged π-extended derivative, is able to significantly alter bioluminescence spectra of different CTZ-dependent luciferases and photoproteins by shifting them towards longer wavelengths. However, Ca2+-regulated photoproteins activated with CTZ-v display very low bioluminescence activities that hampers its usage as a substrate of photoprotein bioluminescence. Here, we report the crystal structure of semi-synthetic Ca2+-discharged obelin-v bound with the reaction product determined at 2.1 Å resolution. Comparison of the crystal structure of Ca2+-discharged obelin-v with those of other obelins before and after bioluminescence reaction reveals no considerable changes in the overall structure. However, the drastic changes in CTZ-binding cavity are observed owing to the completely different reaction product, coelenteramine-v (CTM-v). Since CTM-v is certainly the main product of obelin-v bioluminescence and is considered to be a product of the "dark" pathway of dioxetanone intermediate decomposition, it explains the low bioluminescence activity of obelin and apparently of other photoproteins with CTZ-v.
Collapse
Affiliation(s)
- Pavel V. Natashin
- grid.418863.00000 0004 0637 9162Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| | - Elena V. Eremeeva
- grid.418863.00000 0004 0637 9162Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia ,grid.412592.90000 0001 0940 9855Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Mikhail B. Shevtsov
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Margarita I. Kovaleva
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey S. Bukhdruker
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria A. Dmitrieva
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitry V. Gulnov
- grid.412592.90000 0001 0940 9855Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Elena V. Nemtseva
- grid.418863.00000 0004 0637 9162Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia ,grid.412592.90000 0001 0940 9855Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Valentin I. Gordeliy
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale (IBS), Université de Grenoble Alpes, CEA, CNRS, Grenoble, France ,grid.1957.a0000 0001 0728 696XInstitute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Alexey V. Mishin
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin I. Borshchevskiy
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia ,grid.33762.330000000406204119Joint Institute for Nuclear Research, Dubna, Russia
| | - Eugene S. Vysotski
- grid.418863.00000 0004 0637 9162Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| |
Collapse
|
4
|
Recombinant light-sensitive photoprotein berovin from ctenophore Beroe abyssicola: Bioluminescence and absorbance characteristics. Biochem Biophys Res Commun 2022; 624:23-27. [DOI: 10.1016/j.bbrc.2022.07.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
|
5
|
Larionova MD, Wu L, Eremeeva EV, Natashin PV, Gulnov DV, Nemtseva EV, Liu D, Liu Z, Vysotski ES. Crystal structure of semisynthetic obelin-v. Protein Sci 2022; 31:454-469. [PMID: 34802167 PMCID: PMC8819848 DOI: 10.1002/pro.4244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.
Collapse
Affiliation(s)
- Marina D. Larionova
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Lijie Wu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Elena V. Eremeeva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Pavel V. Natashin
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| | - Dmitry V. Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Elena V. Nemtseva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Zhi‐Jie Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina,School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Eugene S. Vysotski
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| |
Collapse
|