1
|
Karlsson E, Rabayah R, Liu T, Moya Cruz E, Kozlowski MC, Karsili TNV, Lester MI. Electronic Spectroscopy of the Halogenated Criegee Intermediate, ClCHOO: Experiment and Theory. J Phys Chem A 2024. [PMID: 39666892 DOI: 10.1021/acs.jpca.4c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A chlorine-substituted Criegee intermediate, ClCHOO, is photolytically generated using a diiodo precursor, detected by VUV photoionization at 118 nm, and spectroscopically characterized via ultraviolet-visible (UV-vis)-induced depletion of m/z = 80 under jet cooled conditions. UV-vis excitation resonant with a π* ← π transition yields a significant ground state depletion, indicating a strong electronic transition and rapid photodissociation. The broad absorption spectrum peaks at 350 nm and is attributed to contributions from both syn (∼70%) and anti (∼30%) conformers of ClCHOO based on spectral simulations using a nuclear ensemble method. Electronic structure theory shows significant differences in the vertical excitation energies of the two conformers (330 and 371 nm, respectively) as well as their relative stabilities in the ground and excited electronic states associated with the π* ← π transition. Natural bond orbital analysis reveals significant and nonintuitive nonbonding contributions to the relative stabilities of the syn and anti conformers.
Collapse
Affiliation(s)
- Elizabeth Karlsson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rawan Rabayah
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Tianlin Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emmanuel Moya Cruz
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana, Lafayette, Louisiana 70504, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
2
|
Wu YJ, Takahashi K, Lin JJM. Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect. J Phys Chem A 2023; 127:8059-8072. [PMID: 37734061 DOI: 10.1021/acs.jpca.3c03418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The kinetics of the simplest Criegee intermediate (CH2OO) reaction with water vapor was revisited. By improving the signal-to-noise ratio and the precision of water concentration, we found that the kinetics of CH2OO involves not only two water molecules but also one and three water molecules. Our experimental results suggest that the decay of CH2OO can be described as d[CH2OO]/dt = -kobs[CH2OO]; kobs = k0 + k1[water] + k2[water]2 + k3[water]3; k1 = (4.22 ± 0.48) × 10-16 cm3 s-1, k2 = (10.66 ± 0.83) × 10-33 cm6 s-1, k3 = (1.48 ± 0.17) × 10-50 cm9 s-1 at 298 K and 300 Torr with the respective Arrhenius activation energies of Ea1 = 1.8 ± 1.1 kcal mol-1, Ea2 = -11.1 ± 2.1 kcal mol-1, Ea3 = -17.4 ± 3.9 kcal mol-1. The contribution of the k3[water]3 term becomes less significant at higher temperatures around 345 K, but it is not ignorable at 298 K and lower temperatures. By quantifying the concentrations of H2O and D2O with a Coriolis-type direct mass flow sensor, the kinetic isotope effect (KIE) was investigated at 298 K and 300 Torr and KIE(k1) = k1(H2O)/k1(D2O) = 1.30 ± 0.32; similarly, KIE(k2) = 2.25 ± 0.44 and KIE(k3) = 0.99 ± 0.13. These mild KIE values are consistent with theoretical calculations based on the variational transition state theory, confirming that the title reaction has a broad and low barrier, and the reaction coordinate involves not only the motion of a hydrogen atom but also that of an oxygen atom. Comparing the results recorded under 300 Torr (N2 buffer gas) with those under 600 Torr, a weak pressure effect of k3 was found. From quantum chemistry calculations, we found that the CH2OO + 3H2O reaction is dominated by the reaction pathways involving a ring structure consisting of two water molecules, which facilitate the hydrogen atom transfer, while the third water molecule is hydrogen-bonded outside the ring. Furthermore, analysis based on dipole capture rates showed that the CH2OO(H2O) + (H2O)2 and CH2OO(H2O)2 + H2O pathways will dominate in the three water reaction.
Collapse
Affiliation(s)
- Yen-Ju Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106923, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106923, Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106923, Taiwan
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106923, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106923, Taiwan
| |
Collapse
|
3
|
Roy TK, Liu T, Qian Y, Sojdak CA, Kozlowski MC, Lester MI. A five-carbon unsaturated Criegee intermediate: synthesis, spectroscopic identification, and theoretical study of 3-penten-2-one oxide. Chem Sci 2023; 14:10471-10477. [PMID: 37800006 PMCID: PMC10548502 DOI: 10.1039/d3sc03993e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 10/07/2023] Open
Abstract
Biogenic alkenes, such as isoprene and α-pinene, are the predominant source of volatile organic compounds (VOCs) emitted into the atmosphere. Atmospheric processing of alkenes via reaction with ozone leads to formation of zwitterionic reactive intermediates with a carbonyl oxide functional group, known as Criegee intermediates (CIs). CIs are known to exhibit a strong absorption (π* ← π) in the near ultraviolet and visible (UV-vis) region due to the carbonyl oxide moiety. This study focuses on the laboratory identification of a five-carbon CI with an unsaturated substituent, 3-penten-2-one oxide, which can be produced upon atmospheric ozonolysis of substituted isoprenes. 3-Penten-2-one oxide is generated in the laboratory by photolysis of a newly synthesized precursor, (Z)-2,4-diiodopent-2-ene, in the presence of oxygen. The electronic spectrum of 3-penten-2-one oxide was recorded by UV-vis induced depletion of the VUV photoionization signal on the parent m/z 100 mass channel using a time-of-flight mass spectrometer. The resultant electronic spectrum is broad and unstructured with peak absorption at ca. 375 nm. To complement the experimental findings, electronic structure calculations are performed at the CASPT2(12,10)/aug-cc-pVDZ level of theory. The experimental spectrum shows good agreement with the calculated electronic spectrum and vertical excitation energy obtained for the lowest energy conformer of 3-penten-2-one oxide. In addition, OH radical products resulting from unimolecular decay of energized 3-penten-2-oxide CIs are detected by UV laser-induced fluorescence. Finally, the experimental electronic spectrum is compared with that of a four-carbon, isoprene-derived CI, methyl vinyl ketone oxide, to understand the effects of an additional methyl group on the associated electronic properties.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Tianlin Liu
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| |
Collapse
|
4
|
Fischer I, Hemberger P. Photoelectron Photoion Coincidence Spectroscopy of Biradicals. Chemphyschem 2023; 24:e202300334. [PMID: 37325876 DOI: 10.1002/cphc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The electronic structure of biradicals is characterized by the presence of two unpaired electrons in degenerate or near-degenerate molecular orbitals. In particular, some of the most relevant species are highly reactive, difficult to generate cleanly and can only be studied in the gas phase or in matrices. Unveiling their electronic structure is, however, of paramount interest to understand their chemistry. Photoelectron photoion coincidence (PEPICO) spectroscopy is an excellent approach to explore the electronic states of biradicals, because it enables a direct correlation between the detected ions and electrons. This permits to extract unique vibrationally resolved photoion mass-selected threshold photoelectron spectra (ms-TPES) to obtain insight in the electronic structure of both the neutral and the cation. In this review we highlight most recent advances on the spectroscopy of biradicals and biradicaloids, utilizing PEPICO spectroscopy and vacuum ultraviolet (VUV) synchrotron radiation.
Collapse
Affiliation(s)
- Ingo Fischer
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Am Hubland, D-97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232, Villigen, Switzerland
| |
Collapse
|
5
|
Lee HK, Chantanapongvanij P, Schmidt RR, Stephenson TA. Master Equation Studies of the Unimolecular Decay of Thermalized Methacrolein Oxide: The Impact of Atmospheric Conditions. J Phys Chem A 2023; 127:4492-4502. [PMID: 37163697 DOI: 10.1021/acs.jpca.3c00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Master equation simulations of the unimolecular reaction dynamics of the Criegee intermediate methacrolein oxide (MACR oxide) have been performed under a variety of temperature and pressure conditions. These simulations provide insight into how the unimolecular kinetics vary across temperatures spanning the range 288-320 K. This work has incorporated a new potential energy surface and includes the anti-to-syn and cis-to-trans conformational dynamics of MACR oxide, as well as the unimolecular reactions to form dioxirane and dioxole species. The competition between the unimolecular reactivity of MACR oxide and previously documented bimolecular reactivity of MACR oxide with water vapor is explored, focusing on how this competition is affected by changes in atmospheric conditions. The impact on the role of MACR oxide as an atmospheric oxidant of SO2 is noted.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Pitchaya Chantanapongvanij
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Rory R Schmidt
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Thomas A Stephenson
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
6
|
Wang G, Liu T, Zou M, Karsili TNV, Lester MI. UV photodissociation dynamics of the acetone oxide Criegee intermediate: experiment and theory. Phys Chem Chem Phys 2023; 25:7453-7465. [PMID: 36848133 DOI: 10.1039/d3cp00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The photodissociation dynamics of the dimethyl-substituted acetone oxide Criegee intermediate [(CH3)2COO] is characterized following electronic excitation to the bright 1ππ* state, which leads to O (1D) + acetone [(CH3)2CO, S0] products. The UV action spectrum of (CH3)2COO recorded with O (1D) detection under jet-cooled conditions is broad, unstructured, and essentially unchanged from the corresponding electronic absorption spectrum obtained using a UV-induced depletion method. This indicates that UV excitation of (CH3)2COO leads predominantly to the O (1D) product channel. A higher energy O (3P) + (CH3)2CO (T1) product channel is not observed, although it is energetically accessible. In addition, complementary MS-CASPT2 trajectory surface-hopping (TSH) simulations indicate minimal population leading to the O (3P) channel and non-unity overall probability for dissociation (within 100 fs). Velocity map imaging of the O (1D) products is utilized to reveal the total kinetic energy release (TKER) distribution upon photodissociation of (CH3)2COO at various UV excitation energies. Simulation of the TKER distributions is performed using a hybrid model that combines an impulsive model with a statistical component, the latter reflecting the longer-lived (>100 fs) trajectories identified in the TSH calculations. The impulsive model accounts for vibrational activation of (CH3)2CO arising from geometrical changes between the Criegee intermediate and the carbonyl product, indicating the importance of CO stretch, CCO bend, and CC stretch along with activation of hindered rotation and rock of the methyl groups in the (CH3)2CO product. Detailed comparison is also made with the TKER distribution arising from photodissociation dynamics of CH2OO upon UV excitation.
Collapse
Affiliation(s)
- Guanghan Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| | - Tianlin Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| | - Meijun Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| |
Collapse
|
7
|
Wang G, Liu T, Zou M, Sojdak CA, Kozlowski MC, Karsili TNV, Lester MI. Electronic Spectroscopy and Dissociation Dynamics of Vinyl-Substituted Criegee Intermediates: 2-Butenal Oxide and Comparison with Methyl Vinyl Ketone Oxide and Methacrolein Oxide Isomers. J Phys Chem A 2023; 127:203-215. [PMID: 36574960 DOI: 10.1021/acs.jpca.2c08025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 2-butenal oxide Criegee intermediate [(CH3CH═CH)CHOO], an isomer of the four-carbon unsaturated Criegee intermediates derived from isoprene ozonolysis, is characterized on its first π* ← π electronic transition and by the resultant dissociation dynamics to O (1D) + 2-butenal [(CH3CH═CH)CHO] products. The electronic spectrum of 2-butenal oxide under jet-cooled conditions is observed to be broad and unstructured with peak absorption at 373 nm, spanning to half maxima at 320 and 420 nm, and in good accord with the computed vertical excitation energies and absorption spectra obtained for its lowest energy conformers. The distribution of total kinetic energy released to products is ascertained through velocity map imaging of the O (1D) products. About half of the available energy, deduced from the theoretically computed asymptotic energy, is accommodated as internal excitation of the 2-butenal fragment. A reduced impulsive model is introduced to interpret the photodissociation dynamics, which accounts for the geometric changes between 2-butenal oxide and the 2-butenal fragment, and vibrational activation of associated modes in the 2-butenal product. Application of the reduced impulsive model to the photodissociation of isomeric methyl vinyl ketone oxide reveals greater internal activation of the methyl vinyl ketone product arising from methyl internal rotation and rock, which is distinctly different from the dissociation dynamics of 2-butenal oxide or methacrolein oxide.
Collapse
Affiliation(s)
- Guanghan Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Tianlin Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Meijun Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
8
|
Liu T, Zou M, Caracciolo A, Sojdak CA, Lester MI. Substituent Effects on the Electronic Spectroscopy of Four-Carbon Criegee Intermediates. J Phys Chem A 2022; 126:6734-6741. [DOI: 10.1021/acs.jpca.2c05502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tianlin Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Meijun Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Adriana Caracciolo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Christopher A. Sojdak
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Antwi E, Ratliff JM, Ashfold MNR, Karsili TNV. Comparing the Excited State Dynamics of CH 2OO, the Simplest Criegee Intermediate, Following Vertical versus Adiabatic Excitation. J Phys Chem A 2022; 126:6236-6243. [PMID: 36067494 DOI: 10.1021/acs.jpca.2c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ab initio molecular dynamics studies of CH2OO molecules following excitation to the minimum-energy geometry of the strongly absorbing S2 (1ππ*) state reveal a much richer range of behaviors than just the prompt O-O bond fission, with unity quantum yield and retention of overall planarity, identified in previous vertical excitation studies from the ground (S0) state. Trajectories propagated for 100 fs from the minimum-energy region of the S2 state show a high surface hopping (nonadiabatic coupling) probability between the near-degenerate S2 and S1 (1nπ*) states at geometries close to the S2 minimum, which enables population transfer to the optically dark S1 state. Greater than 80% of the excited population undergoes O-O bond fission on the S2 or S1 potential energy surfaces (PESs) within the analysis period, mostly from nonplanar geometries wherein the CH2 moiety is twisted relative to the COO plane. Trajectory analysis also reveals recurrences in the O-O stretch coordinate, consistent with the resonance structure observed at the red end of the parent S2-S0 absorption spectrum, and a small propensity for out-of-plane motion after nonadiabatic coupling to the S1 PES that enables access to a conical intersection between the S1 and S0 states and cyclization to dioxirane products.
Collapse
Affiliation(s)
- Ernest Antwi
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70503, United States
| | - Jordyn M Ratliff
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70503, United States
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70503, United States
| |
Collapse
|