1
|
Palma F, Acunzo M, Della Marca R, Dell'Annunziata F, Folliero V, Chianese A, Zannella C, Franci G, De Filippis A, Galdiero M. Evaluation of antifungal spectrum of Cupferron against Candida albicans. Microb Pathog 2024; 194:106835. [PMID: 39117014 DOI: 10.1016/j.micpath.2024.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Candida albicans is an opportunistic yeast accounting for about 50-90 % of all cases of candidiasis in humans, ranging from superficial to systemic potentially life-threatening infections. The presence of several virulence factors, including biofilm, hyphal transition, and proteolytic enzymes production, worsens the fungal infections burden on healthcare system resources. Hence, developing new bioactive compounds with antifungal activity is a pressing urgence for the scientific community. In this perspective, we evaluated the anti-Candida potential of the N-Nitroso-N-phenylhydroxylamine ammonium salt (cupferron) against standard and clinical C. albicans strains. Firstly, the in vitro cytotoxicity of cupferron was checked in the range 400-12.5 μg/mL against human microglial cells (HMC-3). Secondly, its antifungal spectrum was explored via disk diffusion test, broth-microdilution method, and time-killing curve analysis, validating the obtained results through scanning electron microscopy (SEM) observations. Additionally, we evaluated the cupferron impact on the main virulence determinants of Candida albicans. At non-toxic concentrations (100-12.5 μg/mL), the compound exerted interesting anti-Candida activity, registering a minimum inhibitory concentration (MIC) between 50 and 100 μg/mL against the tested strains, with a fungistatic effect until 100 μg/mL. Furthermore, cupferron was able to counteract fungal virulence at MIC and sub-MIC values (50-12.5 μg/mL). These findings may propose cupferron as a new potential antifungal option for the treatment of Candida albicans infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Marina Acunzo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
2
|
Jusuf S, Mansour MK. Catalase Deactivation Increases Dermatophyte Sensitivity to ROS Sources. J Fungi (Basel) 2024; 10:476. [PMID: 39057361 PMCID: PMC11277954 DOI: 10.3390/jof10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
As the leading cause of fungal skin infections around the globe, dermatophytes are responsible for a multitude of skin ailments, ranging from athlete's foot to ringworm. Due to the combination of its growing prevalence and antifungal misuse, antifungal-resistant dermatophyte strains like Trichophyton indotineae have begun to emerge, posing a significant global health risk. The emergence of these resistant dermatophytes highlights a critical need to identify alternative methods of treating dermatophyte infections. In our study, we utilized a 405 nm LED to establish that blue light can effectively inactivate catalase within a variety of both susceptible and resistant dermatophytes. Through this catalase inactivation process, light-treated dermatophytes were found to exhibit increased sensitivity to reactive oxygen species (ROS)-producing agents, improving the performance of antimicrobial agents such as H2O2 and amphotericin B. Our findings further demonstrate that light-induced catalase inactivation can inhibit the formation and polarized growth of hyphae from dermatophytes, suppressing biomass formation. Thus, by increasing ROS sensitization and inhibiting hyphal development, catalase-deactivating blue light offers a potential non-invasive and non-drug-reliant method of managing dermatophyte infections, opening new avenues for the potential treatment of these common infections in conjunction with existing treatments.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
3
|
Jusuf S, Dong PT. Chromophore-Targeting Precision Antimicrobial Phototherapy. Cells 2023; 12:2664. [PMID: 37998399 PMCID: PMC10670386 DOI: 10.3390/cells12222664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Phototherapy, encompassing the utilization of both natural and artificial light, has emerged as a dependable and non-invasive strategy for addressing a diverse range of illnesses, diseases, and infections. This therapeutic approach, primarily known for its efficacy in treating skin infections, such as herpes and acne lesions, involves the synergistic use of specific light wavelengths and photosensitizers, like methylene blue. Photodynamic therapy, as it is termed, relies on the generation of antimicrobial reactive oxygen species (ROS) through the interaction between light and externally applied photosensitizers. Recent research, however, has highlighted the intrinsic antimicrobial properties of light itself, marking a paradigm shift in focus from exogenous agents to the inherent photosensitivity of molecules found naturally within pathogens. Chemical analyses have identified specific organic molecular structures and systems, including protoporphyrins and conjugated C=C bonds, as pivotal components in molecular photosensitivity. Given the prevalence of these systems in organic life forms, there is an urgent need to investigate the potential impact of phototherapy on individual molecules expressed within pathogens and discern their contributions to the antimicrobial effects of light. This review delves into the recently unveiled key molecular targets of phototherapy, offering insights into their potential downstream implications and therapeutic applications. By shedding light on these fundamental molecular mechanisms, we aim to advance our understanding of phototherapy's broader therapeutic potential and contribute to the development of innovative treatments for a wide array of microbial infections and diseases.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Pu-Ting Dong
- Department of Microbiology, The Forsyth Institute, Boston, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
4
|
Jia H, Yue S. Stimulated Raman Scattering Imaging Sheds New Light on Lipid Droplet Biology. J Phys Chem B 2023; 127:2381-2394. [PMID: 36897936 PMCID: PMC10042165 DOI: 10.1021/acs.jpcb.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Indexed: 03/11/2023]
Abstract
A lipid droplet (LD) is a dynamic organelle closely associated with cellular functions and energy homeostasis. Dysregulated LD biology underlies an increasing number of human diseases, including metabolic disease, cancer, and neurodegenerative disorder. Commonly used lipid staining and analytical tools have difficulty providing the information regarding LD distribution and composition at the same time. To address this problem, stimulated Raman scattering (SRS) microscopy uses the intrinsic chemical contrast of biomolecules to achieve both direct visualization of LD dynamics and quantitative analysis of LD composition with high molecular selectivity at the subcellular level. Recent developments of Raman tags have further enhanced sensitivity and specificity of SRS imaging without perturbing molecular activity. With these advantages, SRS microscopy has offered great promise for deciphering LD metabolism in single live cells. This article overviews and discusses the latest applications of SRS microscopy as an emerging platform to dissect LD biology in health and disease.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Du Y, Sun J, Tian Z, Cheng Y, Long CA. Effect of blue light treatments on Geotrichum citri-aurantii and the corresponding physiological mechanisms of citrus. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|