1
|
Crespo-Hernández CE. Special issue on nucleic acid photophysics. Photochem Photobiol 2024; 100:257-261. [PMID: 38501585 DOI: 10.1111/php.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024]
|
2
|
Ma C, Xiong Q, Lin J, Zeng X, Wang M, Kwok WM. Is 1-methylcytosine a faithful model compound for ultrafast deactivation dynamics of cytosine nucleosides in solution? Phys Chem Chem Phys 2024; 26:2963-2972. [PMID: 38214513 DOI: 10.1039/d3cp05509d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
1-Methylcytosine (1mCyt) is the base for nucleoside N1-methylpseudodeoxycytidine of Hachimoji nucleic acids and a frequently used model compound for theoretical studies on excited states of cytosine nucleosides. However, there is little experimental characterization of spectra and photo-dynamic properties of 1mCyt. Herein, we report a comprehensive investigation into excited state dynamics and effects of solvents on fluorescence dynamics of 1mCyt in both water and acetonitrile. The study employed femtosecond broadband time-resolved fluorescence, transient absorption, and steady-state spectroscopy, along with density functional theory and time-dependent density functional theory calculations. The results obtained provide the first experimental evidence for identifying a dark-natured ∼5.7 ps lifetime nπ* state in the ultrafast non-radiative deactivation with 1mCyt in aqueous solution. This study also demonstrates a significant effect of the solvent on 1mCyt's fluorescence emission, which highlights the crucial role of solute-solvent hydrogen bonding in altering structures and reshaping the radiative as well as nonradiative dynamics of the 1mCyt's ππ* state in the aprotic solvent compared to the protic solvent. The solvent effect exhibited by 1mCyt is distinctive from that known for deoxycytidine, indicating the need for caution in using 1mCyt for modelling the ultrafast dynamics of Cyt nucleosides in solvents with varying properties. Overall, our study unveils a deactivation mechanism that confers a high degree of photo-stability for 1mCyt in solution, shedding light on the molecular basis for solvent-induced effects on the excited state dynamics of nucleobases and derivatives.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, P. R. China.
| | - Qingwu Xiong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, P. R. China.
- College of Physics and optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China
| | - Jingdong Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, P. R. China.
| | - Xiaoyan Zeng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, P. R. China.
| | - Mingliang Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, P. R. China.
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China.
| |
Collapse
|