1
|
Wardhani PH, Sigit Prakoeswa CR, Listiawan MY. Efficacy of Picosecond Laser in Clinical, Histopathology, and Immunohistochemistry Examination in Indonesian Wrinkled Skin. J Lasers Med Sci 2024; 15:e44. [PMID: 39381786 PMCID: PMC11459290 DOI: 10.34172/jlms.2024.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/23/2024] [Indexed: 10/10/2024]
Abstract
Introduction: The elderly population wants to improve skin function and maintain a youthful appearance without wrinkles. Laser is one of the highly developed and widely used therapeutic modalities of skin aging by stimulating dermal collagen formation. Picosecond laser therapy is performed on skin with wrinkles to determine the mechanism of wrinkle improvement with a picosecond laser through an increasing in tissue inhibitor of metalloproteinases 1 (TIMP-1), and a decrease in matrix metalloproteinase-1 (MMP-1), which was confirmed by collagen density. Methods: The study was started from March 2021 to July 2021 at URJ Dr. Soetomo Hospital Surabaya and Surabaya Skin Centre. Twenty patients meeting the inclusion criteria of being 36-55 years of age and having a wrinkle in the forearm were enrolled by random sampling. Each sample data was recorded, the average TIMP-1, MMP-1, collagen density, and clinical wrinkles were calculated, and the laser was performed by using a picosecond 755 nm laser. Results: All patients showed a moderate pre-test wrinkle scale. The figure for TIMP-1 and MMP-1 after therapy was higher. The MMP-1/TIMP-1 ratio in wrinkles treated by using a picosecond laser was lower but insignificant than before. The picture of collagen density indicates that collagen density after laser therapy was higher than before. Conclusion: The result of clinical examination, histopathology, and immunohistochemistry in this research explained that a picosecond 755 nm laser with DLA is an effective therapy for wrinkles in Indonesian patients without any adverse effects.
Collapse
Affiliation(s)
- Putri Hendria Wardhani
- Departement of Dermatology and Venereology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Surabaya Skin Centre, Surabaya, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Departement of Dermatology and Venereology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Muhammad Yulianto Listiawan
- Departement of Dermatology and Venereology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
2
|
Munavalli GS, Leight-Dunn HM. Pilot Study to Demonstrate Improvement in Skin Tone and Texture by Treatment with a 1064 nm Q-Switched Neodymium-Doped Yttrium Aluminum Garnet Laser. J Clin Med 2024; 13:1380. [PMID: 38592205 PMCID: PMC10931777 DOI: 10.3390/jcm13051380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The 1064 nm Q-switched neodymium-doped yttrium aluminum garnet (QS Nd:YAG) laser was developed to treat unwanted pigmentation in the skin such as lentigines caused by photoaging, and tattoos from dye/ink insertion. This laser has also been used for non-ablative epidermal rejuvenation (skin toning). OBJECTIVE To evaluate changes in skin tone, skin texture and overall improvement after a series of treatments with the QS Nd:YAG laser. METHODS Participants received seven full-face treatments with M22 or Stellar M22, a 1064 nm QS Nd:YAG laser, at 2-week intervals. The investigators and participants evaluated the improvement in skin tone and texture at 1, 3 and 6 months after the last treatment. Patient satisfaction, patient discomfort, downtime and adverse events were recorded. Histological changes in the treated area were also evaluated. RESULTS Thirteen women with a median age of 45 years (range, 34-61 years) were included in the study. The majority of the participants (53.9%) had skin type VI. One month after the last treatment session, 38% of participants reported good to very good improvement. This value increased to 100% participant improvement at both the 3-month and 6-month follow-up visits. The reduction in melanin index and the histological analysis demonstrated that the laser procedure contributed to a reduction in epidermal melanin content. Treatments were not associated with high levels of pain or discomfort. The most common immediate post-treatment response was erythema and edema. Most participants were satisfied with the resulting treatment outcome. CONCLUSION Skin treatment with the 1064 nm QS Nd:YAG laser module on the M22 and Stellar M22 devices, using a large spot size, low fluence, moderately high repetition rate, improves skin tone and texture in patients with skin types II-VI.
Collapse
Affiliation(s)
- Girish S. Munavalli
- Department of Dermatology, Wake Forest University School of Medicine, 1918 Randolph Rd., Suite 550, Charlotte, NC 28207, USA
| | - Hayley M. Leight-Dunn
- Dermatology, Laser, and Vein Specialists of the Carolinas, 1918 Randolph Rd., Suite 550, Charlotte, NC 28207, USA;
| |
Collapse
|
3
|
Zhang H, Zhang C, Pan L, Chen Y, Bian Z, Yang Y, Ke T, Sun W, Chen L, Tan J. Low-level Nd:YAG laser inhibiting inflammation and oxidative stress in human gingival fibroblasts via AMPK/SIRT3 axis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112845. [PMID: 38244301 DOI: 10.1016/j.jphotobiol.2024.112845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE Photobiomodulation is extensively employed in the management of chronic inflammatory diseases such as periodontitis because of its anti-inflammatory and antioxidant effects. This study used low-level Nd:YAG laser to investigate the mechanism of photobiomodulation as well as the role of adenosine monophosphate-activated protein kinase (AMPK) and Sirtuins (SIRT) 3 in it, providing new clues for the treatment of periodontitis. METHODS Human gingival fibroblasts (HGFs) were extracted from gingiva and stimulated with LPS. The suitable parameters of Nd:YAG laser were chosen for subsequent experiments by detecting cell viability. We assessed the level of inflammation and oxidative stress as well as AMPK and SIRT3. The mechanism for AMPK targeting SIRT3 modulating the anti-inflammatory and antioxidant effects of photobiomodulation was explored by the AMPK inhibitor (Compound C) test, cell transfection, western blot, and immunofluorescence. RESULTS HGFs were isolated and identified, followed by the identification of optimal Nd:YAG laser parameters (60 mJ, 15 Hz, 10s) for subsequent experimentation. With this laser, inflammatory factors (IL-6, TNF-α, COX2, and iNOS) decreased as well as the phosphorylation and nuclear translocation of NFκB-P65. SOD2 was up-regulated but reactive oxygen species (ROS) was down-regulated. The laser treatment exhibited enhancements in AMPK phosphorylation and SIRT3 expression. The above effects could all be reversed by Compound C. Silencing AMPK or SIRT3 by siRNA, the down-regulation of COX2, iNOS, and ROS by laser was inhibited. SIRT3 was down-regulated when the AMPK was silenced. CONCLUSION Low-level Nd:YAG laser activated AMPK-SIRT3 signaling pathway, facilitating the anti-inflammatory and antioxidative activity.
Collapse
Affiliation(s)
- Haizheng Zhang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyi Zhang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lai Pan
- Dental Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifan Chen
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zirui Bian
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxuan Yang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Ke
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilian Sun
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Chen
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China..
| | - Jingyi Tan
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China..
| |
Collapse
|
4
|
Xiang H, Jia X, Duan X, Xu Q, Zhang R, He Y, Yang Z. Q-switched 1064 nm Nd: YAG laser restores skin photoageing by activating autophagy by TGFβ1 and ITGB1. Exp Dermatol 2024; 33:e15006. [PMID: 38284200 DOI: 10.1111/exd.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Excessive ultraviolet B ray (UVB) exposure to sunlight results in skin photoageing. Our previous research showed that a Q-switched 1064 nm Nd: YAG laser can alleviate skin barrier damage through miR-24-3p. However, the role of autophagy in the laser treatment of skin photoageing is still unclear. This study aims to investigate whether autophagy is involved in the mechanism of Q-switched 1064 nm Nd: YAG in the treatment of skin ageing. In vitro, primary human dermal fibroblast (HDF) cells were irradiated with different doses of UVB to establish a cell model of skin photoageing. In vivo, SKH-1 hairless mice were irradiated with UVB to establish a skin photoageing mouse model and irradiated with laser. The oxidative stress and autophagy levels were detected by western blot, immunofluorescence and flow cytometer. String was used to predict the interaction protein of TGF-β1, and CO-IP and GST-pull down were used to detect the binding relationship between TGFβ1 and ITGB1. In vitro, UVB irradiation reduced HDF cell viability, arrested cell cycle, induced cell senescence and oxidative stress compared with the control group. Laser treatment reversed cell viability, senescence and oxidative stress induced by UVB irradiation and activated autophagy. Autophagy agonists or inhibitors can enhance or attenuate the changes induced by laser treatment, respectively. In vivo, UVB irradiation caused hyperkeratosis, dermis destruction, collagen fibres reduction, increased cellular senescence and activation of oxidative stress in hairless mice. Laser treatment thinned the stratum corneum of skin tissue, increased collagen synthesis and autophagy in the dermis, and decreased the level of oxidative stress. Autophagy agonist rapamycin and autophagy inhibitor 3-methyladenine (3-MA) can enhance or attenuate the effects of laser treatment on the skin, respectively. Also, we identified a direct interaction between TGFB1 and ITGB1 and participated in laser irradiation-activated autophagy, thereby inhibiting UVB-mediated oxidative stress further reducing skin ageing. Q-switched 1064 nm Nd: YAG laser treatment inhibited UVB-induced oxidative stress and restored skin photoageing by activating autophagy, and TGFβ1 and ITGB1 directly incorporated and participated in this process.
Collapse
Affiliation(s)
- Huiyi Xiang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaorong Jia
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoxia Duan
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qi Xu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiqi Zhang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunting He
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi Yang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Bagherani N, Firooz A, Ghanadan A, Smoller BR, Mirmomeni G, Shojaei R, Mondanizadeh M, Tavoosidana G. Assessment of efficacy of carboxytherapy in management of skin aging through evaluation of gene expression profile: a 2-split randomized clinical trial. Arch Dermatol Res 2023; 315:2575-2584. [PMID: 37402830 DOI: 10.1007/s00403-023-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/04/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
Skin aging is a continuous and irreversible process which results in impairment of the skin role as barrier against all aggressive exogenous factors. It mainly manifests by photoaging, laxity, sagging, wrinkling, and xerosis. Carboxytherapy is considered as a safe, minimally invasive modality used for rejuvenation, restoration, and recondition of the skin. In the current study, the efficacy of carboxytherapy in the treatment of skin aging was assessed through investigation of gene expression profile for Coll I, Coll III, Coll IV, elastin, FGF, TGF-β1, and VEGF. Our study is a 2-split clinical trial in which carboxytherapy was performed on one side of the abdomen in 15 cases with intrinsically skin aging manifestations weekly for 10 sessions, while the other side of the abdomen was left without treatment. Two weeks after the last session, skin biopsies were taken from both the treated and control sides of the abdomen in order to assess gene expression profile by qRT-PCR. The analysis of gene expression levels for all of Coll I, Coll III, Coll IV, elastin, TGF-β1, FGF and VEGF genes showed a statistically significant difference between the interventional and control groups. The findings for all of these seven genes showed increase in the interventional group, among which Coll IV, VEGF, FGF, and elastin showed the higher mean changes. Our study confirmed the effectiveness of carboxytherapy in treating and reversing the intrinsically aging skin.Clinical Trial Registration Code and Date of Registration: ChiCTR2200055185; 2022/1/2.
Collapse
Affiliation(s)
- Nooshin Bagherani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Firooz
- Center for Research and Training in Skin Diseases and Leprosy, Clinical Trial Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghanadan
- Department of Dermatopathology, Razi Hospital, Tehran, Iran
- Department of Pathology, Cancer Institute, Imam Khoemini Hospital Complex, Tehran, Iran
| | - Bruce R Smoller
- Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Golshan Mirmomeni
- Hearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shojaei
- Department of Surgery, Arak University of Medical Sciences, Arak, Markazi Province, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhang X, Sun S, Li Z, Sun Q. Nd: YAG laser activates the TGFBR1-SMAD4-Col3a1 axis via miR-27a-3p in photoaged rat skin. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:269-272. [PMID: 35856888 DOI: 10.1111/phpp.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xueyan Zhang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuna Sun
- Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Wang T, Long Q, Hu Y, Yang Y, Li X, Wei H. miR-181c-5p suppresses neuronal pyroptosis via NLRP1 in Alzheimer's disease. Behav Brain Res 2023; 447:114387. [PMID: 37003492 DOI: 10.1016/j.bbr.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
Alzheimer's disease (AD) is neurodegenerative disease common in the elderly, whose pathological mechanism is the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. Pyroptosis is a programmed cell death mediated by Gasdermin protein. After the activation of inflammasomes, the cleaved caspase⁃ 1/4/5/11 activates GSDMD, which promotes the release of inflammatory substances and eventually causes cell swelling and death. Pyroptosis caused by inflammasomes plays a role in AD. However, the specific regulatory mechanism of pyroptosis in AD still needs more experimental studies. To further study the effects of NLRP1-induced pyroptosis on AD, miR-181c-5p, which could targeted bind to NLRP1, was knocked down or overexpression in HT22 cells to detect cell apoptosis with Tunel assay, the expression of inflammasome-related proteins with Western blot and the content of inflammatory factors with ELISA. miR-181c-5p was overexpressed in AD model mice to detect the learning and cognitive ability with morris water maze testing and the expression of inflammasoma-related proteins with Western blot. The results showed that miR-181c-5p mimic attenuated Aβ1-42-induced neuronal pyroptosis in HT22 cells, while up-regulation of NLRP1 aggravated neuronal pyroptosis in HT22 cells. In mice, miR-181c-5p agomir attenuated neuronal pyroptosis in both hippocampal and cortical tissues, and miR-181c-5p antagomir improved neuronal pyroptosis and cognitive impairment through NLRP1. Therefore, the study suggests that miR-181c-5p can alleviated AD process by targeted downregulation of NLRP1, which is expected to be a target site for AD treatment.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Geriatrics, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Qionghua Long
- Department of Geriatrics, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yang Hu
- Department of Geriatrics, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yongli Yang
- Department of Geriatrics, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Xingguo Li
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan, China.
| | - Huan Wei
- Department of Neurology, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.
| |
Collapse
|
8
|
Zhang X, Wang R, Lv J, Sun Q. Q-Switched 1064 nm Nd:YAG Laser Rejuvenates Photoaging Skin of Rats by Downregulating miR-196b-5p. Photobiomodul Photomed Laser Surg 2022; 40:708-714. [PMID: 36286575 DOI: 10.1089/photob.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Background: Q-switched 1064 nm Nd:YAG laser (1064-QSNYL) is efficient in rejuvenating photoaging skin, and microRNAs (miRNAs) participate in this process. Objective: In this study, we aimed to explore the effects of 1064-QSNYL on miR-196b-5p, TGF-beta receptor II (TGFBR2), and SMAD7 in the photoaging skin of rats. Methods: The relationship between miR-196b-5p and TGFBR2 in HaCaT cells was detected by real-time PCR and western blotting. A skin photoaging model was established in Wistar rats using ultraviolet (UV) radiation (UVR). Dermoscopy, hematoxylin-eosin (HE) staining, Sirius red staining, and hydroxyproline content were used to observe the effect of UVR on rat skin. The 1064-QSNYL was used for skin rejuvenation. The expression of COL3A1, TGFB1, TGFBR2, SMAD2, SMAD3, and SMAD7 was detected by real-time PCR and/or western blotting. Results: TGFBR2 was a specific target of miR-196b-5p in the skin. In HaCaT cells and the photoaging skin of rats, 1064-QSNYL treatment upregulated COL3A1 and TGFBR2 and downregulated SMAD7 and miR-196b-5p. Conclusions: We showed for the first time that 1064-QSNYL treatment rejuvenates photoaging rat skin by regulating TGFBR2 and SMAD7. Downregulation of miR-196b-5p assists in this process by targeting and upregulating TGFBR2.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruijie Wang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jian Lv
- Department of Traditional Chinese Medicine, Shandong Provincial ENT Hospital, Jinan, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Expression Profiles and Functional Analysis of Plasma Exosomal Circular RNAs in Acute Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3458227. [PMID: 36221294 PMCID: PMC9547997 DOI: 10.1155/2022/3458227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Acute myocardial infarction (AMI) is a common cardiovascular disease with high rates of morbidity and mortality globally. The dysregulation of circular RNAs (circRNAs) has been shown to be closely related to various pathological aspects of AMI. However, the function of exosomal circRNAs in AMI has yet to be investigated. The purpose of this study was to investigate the expression profiles of plasma exosomal circRNAs in AMI and explore their potential functionality. The expression profiles of plasma exosomal circRNAs in patients with AMI, stable coronary heart atherosclerotic disease (CAD), and healthy controls were obtained from a GEO expression dataset (GSE159657). We also analyzed bioinformatics functionality, potential pathways, and interaction networks related to the microRNAs associated with the differentially expressed circRNAs. A total of 253 exosomal circRNAs (184 up- and 69 down-regulated) and 182 exosomal circRNAs (94 up- and 88 down-regulated) were identified as being differentially expressed between the control group and the AMI and CAD patients, respectively. Compared with the CAD group, 231 different exosomal circRNAs (177 up- and 54 down-regulated) were identified in the AMI group. Functional analysis suggested that the parental genes of exosomal has_circ_0061776 were significantly enriched in the biological process of lysine degradation. Pathway interaction network analysis further indicated that exosomal has_circ_0061776 was associated with has-miR-133a, has-miR-214, has-miR-423, and has-miR-217 and may play a role in the pathogenesis of AMI through the MAPK signaling pathway. This study identified the differential expression and functionality of exosomal circRNAs in AMI and provided further understanding of the potential pathogenesis of an exosomal circRNA-related competing endogenous RNA (ceRNA) network in AMI.
Collapse
|
10
|
Zhang Y, Wang Y, Zeng L, Liu Y, Sun H, Li S, Wang S, Shu L, Liu N, Yin S, Wang J, Ni D, Wu Y, Yang Y, He L, Meng B, Yang X. Amphibian-derived peptide homodimer OA-GL17d promotes skin wound regeneration through the miR-663a/TGF-β1/Smad axis. BURNS & TRAUMA 2022; 10:tkac032. [PMID: 35832307 PMCID: PMC9273405 DOI: 10.1093/burnst/tkac032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Background Amphibian-derived peptides exhibit considerable potential in the discovery and development of new therapeutic interventions for clinically challenging chronic skin wounds. MicroRNAs (miRNAs) are also considered promising targets for the development of effective therapies against skin wounds. However, further research in this field is anticipated. This study aims to identify and provide a new peptide drug candidate, as well as to explore the underlying miRNA mechanisms and possible miRNA drug target for skin wound healing. Methods A combination of Edman degradation, mass spectrometry and cDNA cloning were adopted to determine the amino acid sequence of a peptide that was fractionated from the secretion of Odorrana andersonii frog skin using gel-filtration and reversed-phase high-performance liquid chromatography. The toxicity of the peptide was evaluated by Calcein-AM/propidium iodide (PI) double staining against human keratinocytes (HaCaT cells), hemolytic activity against mice blood cells and acute toxicity against mice. The stability of the peptide in plasma was also evaluated. The prohealing potency of the peptide was determined by MTS, scratch healing and a Transwell experiment against HaCaT cells, full-thickness injury wounds and scald wounds in the dorsal skin of mice. miRNA transcriptome sequencing analysis, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting were performed to explore the molecular mechanisms. Results A novel peptide homodimer (named OA-GL17d) that contains a disulfide bond between the 16th cysteine residue of the peptide monomer and the sequence ‘GLFKWHPRCGEEQSMWT’ was identified. Analysis showed that OA-GL17d exhibited no hemolytic activity or acute toxicity, but effectively promoted keratinocyte proliferation and migration and strongly stimulated the repair of full-thickness injury wounds and scald wounds in the dorsal skin of mice. Mechanistically, OA-GL17d decreased the level of miR-663a to increase the level of transforming growth factor-β1 (TGF-β1) and activate the subsequent TGF-β1/Smad signaling pathway, thereby resulting in accelerated skin wound re-epithelialization and granular tissue formation. Conclusions Our results suggest that OA-GL17d is a new peptide drug candidate for skin wound repair. This study emphasizes the importance of exogenous peptides as molecular probes for exploring competing endogenous RNA mechanisms and indicates that miR-663a may be an effective target for promoting skin repair.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Lin Zeng
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Siyu Wang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Junsong Wang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Ying Yang
- Endocrinology Department of Affiliated Hospital of Yunnan University , Kunming 650021, Yunnan, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University , Kunming, 650500, Yunnan, China
| | - Buliang Meng
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| |
Collapse
|