1
|
Shital S, Madan E, Selvapandiyan A, Kumar Ganguly N. An update on recombinant vaccines against leishmaniasis. Indian J Med Res 2024; 160:323-337. [PMID: 39632642 PMCID: PMC11619067 DOI: 10.25259/ijmr_1040_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Leishmaniasis is a parasitic disease caused by various species of the Leishmania parasite, manifesting in visceral (VL), cutaneous (CL), and mucocutaneous (MCL) forms. To combat this debilitating disease, various vaccines candidates including proteins, DNA, vectors, adjuvants, and recombinant whole parasites have been developed and tested experimentally and preclinically against several Leishmania species. Some vaccines have already entered human clinical trials. These vaccines aim to induce protective immunity using specific antigens. This review examines all efforts to develop recombinant vaccines against the parasite, analyzing successes including commercially available canine vaccines and the overall challenges faced in the quest to eradicate the disease. Additionally, recent advances in vaccine delivery systems, such as viral vectors and non-pathogenic bacteria, offer promising avenues to enhance immunogenicity and improve the targeted delivery of antigens, potentially leading to more effective and long-lasting immune responses. By understanding past and current efforts, future strategies can be refined to create more effective vaccines and ultimately control or eradicate this parasitic disease.
Collapse
Affiliation(s)
- Shital Shital
- Department of Molecular Medicine, Jamia Hamdard, India
| | - Evanka Madan
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | | |
Collapse
|
2
|
Saini I, Joshi J, Kaur S. Leishmania vaccine development: A comprehensive review. Cell Immunol 2024; 399-400:104826. [PMID: 38669897 DOI: 10.1016/j.cellimm.2024.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Infectious diseases like leishmaniasis, malaria, HIV, tuberculosis, leprosy and filariasis are responsible for an immense burden on public health systems. Among these, leishmaniasis is under the category I diseases as it is selected by WHO (World Health Organization) on the ground of diversity and complexity. High cost, resistance and toxic effects of Leishmania traditional drugs entail identification and development of therapeutic alternative. Since the natural infection elicits robust immunity, consistence efforts are going on to develop a successful vaccine. Clinical trials have been conducted on vaccines like Leish-F1, F2, and F3 formulated using specific Leishmania antigen epitopes. Current strategies utilize individual or combined antigens from the parasite or its insect vector's salivary gland extract, with or without adjuvant formulation for enhanced efficacy. Promising animal data supports multiple vaccine candidates (Lmcen-/-, LmexCen-/-), with some already in or heading for clinical trials. The crucial challenge in Leishmania vaccine development is to translate the research knowledge into affordable and accessible control tools that refines the outcome for those who are susceptible to infection. This review focuses on recent findings in Leishmania vaccines and highlights difficulties facing vaccine development and implementation.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Mahor H, Mukherjee A, Sarkar A, Saha B. Anti-leishmanial therapy: Caught between drugs and immune targets. Exp Parasitol 2023; 245:108441. [PMID: 36572088 DOI: 10.1016/j.exppara.2022.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/12/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is an enigmatic disease that has very restricted options for chemotherapy and none for prophylaxis. As a result, deriving therapeutic principles for curing the disease has been a major objective in Leishmania research for a long time. Leishmania is a protozoan parasite that lives within macrophages by subverting or switching cell signaling to the pathways that ensure its intracellular survival. Therefore, three groups of molecules aimed at blocking or eliminating the parasite, at least, in principle, include blockers of macrophage receptor- Leishmania ligand interaction, macrophage-activating small molecules, peptides and cytokines, and signaling inhibitors or activators. Macrophages also act as an antigen-presenting cell, presenting antigen to the antigen-specific T cells to induce activation and differentiation of the effector T cell subsets that either execute or suppress anti-leishmanial functions. Three groups of therapeutic principles targeting this sphere of Leishmania-macrophage interaction include antibodies that block pro-leishmanial response of T cells, ligands that activate anti-leishmanial T cells and the antigens for therapeutic vaccines. Besides these, prophylactic vaccines have been in clinical trials but none has succeeded so far. Herein, we have attempted to encompass all these principles and compose a comprehensive review to analyze the feasibility and adoptability of different therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Hima Mahor
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Arka Mukherjee
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India; Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
4
|
Lipophosphoglycan-3 protein from Leishmania infantum chagasi plus saponin adjuvant: A new promising vaccine against visceral leishmaniasis. Vaccine 2020; 39:282-291. [PMID: 33309484 DOI: 10.1016/j.vaccine.2020.11.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023]
Abstract
Visceral leishmaniasis (VL) is a serious neglected tropical disease that affects humans and dogs in urban areas. There are no vaccines against human VL, and few licensed canine VL vaccines are currently available, which instigates the search for new antigens and vaccine formulations with prophylactic potential against VL in these hosts. In this study, we evaluated the immunization using the native and recombinant Leishmania infantum chagasi (L. chagasi) lipophosphoglycan-3 (LPG3) and the adjuvants saponin (SAP) and incomplete Freund adjuvant (IFA) against L. chagasi infection in BALB/c mice. The native LPG3 vaccine was immunogenic, inducing splenic IFN-γ and IL-10 production, and mixed Th1/Th2 response when associated with IFA. However, only mice vaccinated with LPG3-IFA presented a reduction in the splenic parasite load (96% in comparison to the PBS control group), but without a significant reduction in the hepatic parasitism. On the other hand, mice immunized with the LPG3-SAP vaccine presented a reduction of approximately 98% in both splenic and hepatic parasite load, accompanied by a Th1/Th17 response and IL-10 production by L. chagasi antigen (AgLc)-stimulated splenic cells. Importantly, vaccination with recombinant LPG3 (rLPG3)-SAP presented similar results to the native LPG3-SAP vaccine. Therefore, the rLPG3-SAP vaccine is qualified to be used in future tests in canine and human models, considering the technical and economic advantages of the recombinant protein production compared to the native protein and the results obtained in the murine model.
Collapse
|
5
|
Navard SH, Rezvan H, Haddad MHF, Ali SA, Nourian A, Eslaminejad MB, Behmanesh MA. Therapeutic effects of mesenchymal stem cells on cutaneous leishmaniasis lesions caused by Leishmania major. J Glob Antimicrob Resist 2020; 23:243-250. [PMID: 32977079 DOI: 10.1016/j.jgar.2020.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Leishmania major (L. major) is a cutaneous leishmaniasis causative agent. Current chemotherapeutic methods are not totally effective in treatment of this disease. The immunomodulation and tissue repairing capability of mesenchymal stem cells (MSCs), ease of isolation, detection and in vitro culture, have encouraged biologists to use MSCs for cell therapy in different infections such as cutaneous leishmaniasis. METHODS BALB/c mice (6-8 weeks old) were infected with L. major then divided into four groups and treated with MSCs, Glucantime, Glucantime + MSCs, or PBS. Regression of lesions, potency of macrophages for phagocytosis, proliferation of immune cells against Leishmania soluble antigen, reduction of spleen parasite burden and healing of the lesions were evaluated on days 10, 20 and 30 of treatment. RESULTS The results indicated that the mice intralesionally injected with MSCs showed significant regression in the lesions produced by L. major by day 30. Proliferation of splenocytes stimulated with SLA (soluble leishmania antigen) in vitro in MSC-treated mice on day 20 was significantly higher than in the other groups. The potency of phagocytosis in macrophages of mice treated with MSCs was significantly higher by day 30 and healing of the lesions in this group of mice showed more progress on histopathological examinations. Spleen parasite burden showed significant reduction in the mice treated with Glucantime + MSCs by day 30. CONCLUSIONS The results showed that including MSCs in treatment of cutaneous leishmaniasis caused by L. major is a promising approach.
Collapse
Affiliation(s)
- Sahar Hamoon Navard
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Hossein Rezvan
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hossein Feiz Haddad
- Leishmaniasis Disease Registry Committee, Dezful University of Medical Sciences, Dezful, Iran; Infectious and Tropical Diseases Research Centre, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - S A Ali
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
6
|
Bastos DSS, Miranda BM, Fialho Martins TV, Guimarães Ervilha LO, Souza ACF, de Oliveira Emerick S, Carneiro da Silva A, Novaes RD, Neves MM, Santos EC, de Oliveira LL, Marques-da-Silva EDA. Lipophosphoglycan-3 recombinant protein vaccine controls hepatic parasitism and prevents tissue damage in mice infected by Leishmania infantum chagasi. Biomed Pharmacother 2020; 126:110097. [PMID: 32203891 DOI: 10.1016/j.biopha.2020.110097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS In this work, we aimed to evaluate the effects of the Leishmania infantum chagasi infection on the liver of vaccinated mice, considering parameters of tissue damage and the inflammatory response elicited by vaccination. MAIN METHODS We used recombinant LPG3 protein (rLPG3) as immunogen in BALB/c mice before challenge with promastigote forms of L. infantum chagasi. The animals were separated into five groups: NI: non-infected animals; NV: non-vaccinated; SAP: treated with saponin; rLPG3: immunized with rLPG3; rLPG3 + SAP: immunized with rLPG3 plus SAP. The experiment was conducted in replicate, and the vaccination protocol consisted of three subcutaneous doses of rLPG3 (40 μg + two boosters of 20 μg). The mice were challenged two weeks after the last immunization. KEY FINDINGS Our results showed that rLPG3 + SAP immunization decreased the parasite burden in 99 %, conferring immunological protection in the liver of the infected animals. Moreover, the immunization improved the antioxidant defenses, increasing CAT and GST activity, while reducing the levels of oxidative stress markers, such as H2O2 and NO3/NO2, and carbonyl protein in the organ. As a consequence, rLPG3 + SAP immunization preserved tissue integrity and reduced the granuloma formation, inflammatory infiltrate and serum levels of AST, ALT, and ALP. SIGNIFICANCE Taken together, these results showed that rLPG3 vaccine confers liver protection against L. infantum chagasi in mice, while maintaining the liver tissue protected against the harmful inflammatory effects caused by the vaccine followed by the infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil
| | | | | | | | | |
Collapse
|
7
|
A biomarker for tegumentary and visceral leishmaniasis based on a recombinant Leishmania hypothetical protein. Immunobiology 2019; 224:477-484. [DOI: 10.1016/j.imbio.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
|
8
|
Mortazavidehkordi N, Fallah A, Abdollahi A, Kia V, Khanahmad H, Najafabadi ZG, Hashemi N, Estiri B, Roudbari Z, Najafi A, Farjadfar A, Hejazi SH. A lentiviral vaccine expressing KMP11-HASPB fusion protein increases immune response to Leishmania major in BALB/C. Parasitol Res 2018; 117:2265-2273. [DOI: 10.1007/s00436-018-5915-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
|
9
|
Garde E, Ramírez L, Corvo L, Solana JC, Martín ME, González VM, Gómez-Nieto C, Barral A, Barral-Netto M, Requena JM, Iborra S, Soto M. Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis. Front Cell Infect Microbiol 2018; 8:112. [PMID: 29675401 PMCID: PMC5895769 DOI: 10.3389/fcimb.2018.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Different members of intracellular protein families are recognized by the immune system of the vertebrate host infected by parasites of the genus Leishmania. Here, we have analyzed the antigenic and immunogenic properties of the Leishmania eIF2 and eIF2B translation initiation factors. An in silico search in Leishmania infantum sequence databases allowed the identification of the genes encoding the α, β, and γ subunits and the α, β, and δ subunits of the putative Leishmania orthologs of the eukaryotic initiation factors F2 (LieIF2) or F2B (LieIF2B), respectively. The antigenicity of these factors was analyzed by ELISA using recombinant versions of the different subunits. Antibodies against the different LieIF2 and LieIF2B subunits were found in the sera from human and canine visceral leishmaniasis patients, and also in the sera from hamsters experimentally infected with L. infantum. In L. infantum (BALB/c) and Leishmania major (BALB/c or C57BL/6) challenged mice, a moderate humoral response against these protein factors was detected. Remarkably, these proteins elicited an IL-10 production by splenocytes derived from infected mice independently of the Leishmania species employed for experimental challenge. When DNA vaccines based on the expression of the LieIF2 or LieIF2B subunit encoding genes were administered in mice, an antigen-specific secretion of IFN-γ and IL-10 cytokines was observed. Furthermore, a partial protection against murine CL development due to L. major infection was generated in the vaccinated mice. Also, in this work we show that the LieIF2α subunit and the LieIF2Bβ and δ subunits have the capacity to stimulate IL-10 secretion by spleen cells from naïve mice. B-lymphocytes were identified as the major producers of this anti-inflammatory cytokine. Taking into account the data found in this study, it may be hypothesized that these proteins act as virulence factors implicated in the induction of humoral responses as well as in the production of the down-regulatory IL-10 cytokine, favoring a pathological outcome. Therefore, these proteins might be considered markers of disease.
Collapse
Affiliation(s)
- Esther Garde
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Ramírez
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Corvo
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José C. Solana
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - M. Elena Martín
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Víctor M. González
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Gómez-Nieto
- Parasitology Unit, LeishmanCeres Laboratory, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - José M. Requena
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Health Research Institute (imas12), Ciudad Universitaria, Madrid, Spain
- *Correspondence: Salvador Iborra
| | - Manuel Soto
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Manuel Soto
| |
Collapse
|
10
|
New insights to structure and immunological features of Leishmania lipophosphoglycan3. Biomed Pharmacother 2017; 95:1369-1374. [PMID: 28946184 DOI: 10.1016/j.biopha.2017.09.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/24/2022] Open
|
11
|
Pirdel L, Zavaran Hosseini A. Immune response to recombinant Leishmania infantum lipophosphoglycan 3 plus CpG oligodeoxynucleotides in BALB/c mice. Parasite Immunol 2017; 39. [PMID: 27353355 DOI: 10.1111/pim.12345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/20/2016] [Indexed: 01/06/2023]
Abstract
Development of a protective antileishmanial vaccine is an urgent priority for successful control of different forms of leishmaniasis. The potential of a recombinant lipophosphoglycan 3 (rLPG3) expressed by Leishmania tarentolae was evaluated in combination with CpG oligodeoxynucleotides (CpG-ODN) as a Th1-promoting adjuvant against Leishmania infantum infection in BALB/c mice. First, mice were immunized subcutaneously with rLPG3 either alone or in combination with CpG-ODN. Next, the immunogenic and protective efficacies of this vaccine were analysed in immunized mice. It was observed that coadministration of rLPG3 with CpG-ODN led to enhance in a Th1 response to rLPG3 induced by itself as the IFN-γ production was promoted in association with the predominant presence of IgG2a antibodies in the sera. However, immunization with rLPG3 plus CpG-ODN induced partial protection against infectious challenge in BALB/c mice. Taken together, further studies are required to improve the protective efficacy using either more potent immune enhancers or vaccination strategies.
Collapse
Affiliation(s)
- L Pirdel
- Department of Medical Sciences, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - A Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Pirdel L, Farajnia S. A Non-pathogenic RecombinantLeishmaniaExpressing Lipophosphoglycan 3 Against Experimental Infection withLeishmania infantum. Scand J Immunol 2017; 86:15-22. [DOI: 10.1111/sji.12557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/14/2017] [Indexed: 01/08/2023]
Affiliation(s)
- L. Pirdel
- Department of Medical Sciences; Ardabil Branch; Islamic Azad University; Ardabil Iran
| | - S. Farajnia
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
13
|
Mortazavidehkordi N, Farjadfar A, Khanahmad H, Ghayour Najafabadi Z, Hashemi N, Fallah A, Najafi A, Kia V, Hejazi SH. Evaluation of a novel lentiviral vaccine expressing KMP11-HASPB fusion protein againstLeishmania infantumin BALB/c mice. Parasite Immunol 2016; 38:670-677. [DOI: 10.1111/pim.12356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/16/2016] [Indexed: 01/15/2023]
Affiliation(s)
- N. Mortazavidehkordi
- Department of Parasitology and Mycology; Isfahan University of Medical Sciences; Isfahan Iran
| | - A. Farjadfar
- Biotechnology Research Center; Mede Bioeconomy Company; Tehran Iran
| | - H. Khanahmad
- Department of Genetics; Faculty of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Z. Ghayour Najafabadi
- Department of Parasitology and Mycology; Isfahan University of Medical Sciences; Isfahan Iran
| | - N. Hashemi
- Department of Parasitology and Mycology; Isfahan University of Medical Sciences; Isfahan Iran
| | - A. Fallah
- Systems and Synthetic Biology Group; Mede Bioeconomy Company; Tehran Iran
| | - A. Najafi
- Department of Immunology; Pasteur Institute of Iran; Tehran Iran
| | - V. Kia
- Department of Medical Biotechnology; Faculty of Medicine; Zanjan University of Medical Sciences; Zanjan Iran
| | - S. H. Hejazi
- Skin Diseases and Leishmaniais Research Center; Department of Parasitology & Mycology; School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| |
Collapse
|
14
|
Miahipour A, Haji-Fatahaliha M, Keshavarz H, Gharavi MJ, Mohamadi H, Babaloo Z, Rafati S, Younesi V, Hosseini M, Yousefi M. T Helper 1 (Th1), Th2, and Th17 Responses toLeishmania majorLipophosphoglycan 3. Immunol Invest 2016; 45:692-702. [PMID: 27611455 DOI: 10.1080/08820139.2016.1208217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 2016; 9:277. [PMID: 27175732 PMCID: PMC4866332 DOI: 10.1186/s13071-016-1553-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Saumya Srivastava
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Prem Shankar
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jyotsna Mishra
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
16
|
Lage DP, Martins VT, Duarte MC, Garde E, Chávez-Fumagalli MA, Menezes-Souza D, Roatt BM, Tavares CAP, Soto M, Coelho EAF. Prophylactic properties of aLeishmania-specific hypothetical protein in a murine model of visceral leishmaniasis. Parasite Immunol 2015; 37:646-56. [DOI: 10.1111/pim.12287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022]
Affiliation(s)
- D. P. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - V. T. Martins
- Departamento de Bioquímica e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - M. C. Duarte
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - E. Garde
- Centro de Biología Molecular Severo Ochoa; CSIC-UAM; Departamento de Biología Molecular; Universidad Autónoma de Madrid; Madrid Spain
| | - M. A. Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - D. Menezes-Souza
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - B. M. Roatt
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - C. A. P. Tavares
- Departamento de Bioquímica e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - M. Soto
- Centro de Biología Molecular Severo Ochoa; CSIC-UAM; Departamento de Biología Molecular; Universidad Autónoma de Madrid; Madrid Spain
| | - E. A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
17
|
Hosseini M, Haji Fatahaliha M, Aghebati-Maleki L, Movassagh Pour A, Rafati S, Seifi-Najmi M, Younesi V, Jadidi-Niaragh F, Yousefi M. Recombinant Leishmania major lipophosphoglycan 3 activates human T-lymphocytes via TLR2-independent pathway. J Immunotoxicol 2015; 13:263-9. [PMID: 26181511 DOI: 10.3109/1547691x.2015.1066906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is one of the most common infectious diseases transmitted by an obligate intracellular genus Leishmania. As there is no efficient vaccination strategy for leishmaniasis, new immunostimulatory components may enhance protective immune responses against this parasite. Lipophosphoglycan 3 (LPG3) is an essential protein required for LPG assembling. In this study, the ability of recombinant LPG3 (rLPG) and its fragments to activate isolated healthy human T-cells and cytokine secretion was evaluated in vitro. The results showed that rLPG3 and its N-terminal fragment (rNT-LPG3) enhanced expression of CD69 on the surface of T-cells and promoted differentiation of CD4(+) T-lymphocytes toward a T-helper 1 (T(H)1) phenotype, in part, through up-regulation of interferon (IFN)-γ expression in a TLR2-independent manner. These results indicated the protective effects of LPG3 (particularly NT-LPG3 fragment) as a potent immunostimulatory component of leishmania in vaccination against leishmaniasis. Further investigations in in vivo assays are clearly warranted.
Collapse
Affiliation(s)
- Maryam Hosseini
- a Drug Applied Research Center .,b Immunology Research Center , and.,c Department of Immunology , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mostafa Haji Fatahaliha
- a Drug Applied Research Center .,b Immunology Research Center , and.,c Department of Immunology , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Leili Aghebati-Maleki
- b Immunology Research Center , and.,c Department of Immunology , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Aliakbar Movassagh Pour
- b Immunology Research Center , and.,c Department of Immunology , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Sima Rafati
- d Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran , Tehran , and
| | - Mehrnush Seifi-Najmi
- b Immunology Research Center , and.,c Department of Immunology , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Younesi
- e Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Farhad Jadidi-Niaragh
- e Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Mehdi Yousefi
- b Immunology Research Center , and.,c Department of Immunology , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|