1
|
Djuidje Chatue IA, Nyegue MA, Kamdem SD, Maloba F, Taliy Junaid I, Malhotra P, Masumbe Netongo P. Association between Epstein-Barr virus reactivation and severe malaria in pregnant women living in a malaria-endemic region of Cameroon. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003556. [PMID: 39133703 PMCID: PMC11318859 DOI: 10.1371/journal.pgph.0003556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Malaria kills nearly 619,000 people each year. Despite the natural immunity acquired to malaria, pregnant women and children under five die from severe forms of the disease in sub-Saharan Africa. Co-infection with acute Epstein-Barr Virus (EBV) infection has been shown to suppress the anti-malarial humoral responses, but little is known about the impact of EBV reactivation on malaria-associated morbidity. This study investigated the association between EBV reactivation and malaria severity in pregnant women living in a malaria-endemic region in Cameroon. A cross-sectional study was conducted on 220 pregnant women attending antenatal consultations in three health facilities in the West region of Cameroon. Malaria was diagnosed by microscopy, and Plasmodium species were identified by Nested PCR. Plasma samples were analyzed by ELISA for the presence of EBV nuclear antigen, EBV viral capsid antigen, and EBV early antigen to determine EBV reactivation. All statistics were performed using GraphPad Prism and SPSS software. The prevalence of malaria among pregnant women was 23.2%, of which 18.6% were P. falciparum mono-infections and 4.5% mixed infections (3.6% P. falciparum and P. malariae; 0.9% P. falciparum and P. ovale). 99.5% of the women were EBV seropositive, and 13.2% had EBV reactivation. Pregnant women with reactivated EBV were more likely to develop severe malaria than pregnant women with latent EBV (OR 4.33, 95% CI 1.08-17.25, p = 0.03). The median parasitemia in pregnant women with latent EBV was lower than in those with EBV reactivation (2816 vs. 19002 parasites/μL, p = 0.02). Our study revealed that lytic reactivation of EBV may be associated with the severity of malaria in pregnant women. Suggesting that, like acute infection, EBV reactivation should be considered a risk factor for severe malaria in pregnant women in malaria-endemic regions or could serve as a hallmark of malaria severity during pregnancy. Further detailed studies are needed.
Collapse
Affiliation(s)
- Ide Armelle Djuidje Chatue
- Department of Microbiology, University of Yaounde I, Yaounde, Centre, Cameroon
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I (BTC-UYI), Yaounde, Centre, Cameroon
- Malaria Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi, India
| | | | - Severin Donald Kamdem
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I (BTC-UYI), Yaounde, Centre, Cameroon
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Franklin Maloba
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I (BTC-UYI), Yaounde, Centre, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Southwest Cameroon
- Biology Program, School of Science, Navajo Technical University, Crownpoint, New Mexico, United States of America
| | - Iqbal Taliy Junaid
- Malaria Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi, India
| | - Pawan Malhotra
- Malaria Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi, India
| | - Palmer Masumbe Netongo
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I (BTC-UYI), Yaounde, Centre, Cameroon
- Biology Program, School of Science, Navajo Technical University, Crownpoint, New Mexico, United States of America
- Department of Biochemistry, University of Yaounde I, Yaounde, Centre, Cameroon
| |
Collapse
|
2
|
Dias MHF, Guimarães LFF, Barcelos MG, Moreira EUM, do Nascimento MFA, de Souza TN, Pires CV, Monteiro TAF, Middeldorp JM, Soares IS, Fontes CJF, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Impact of Epstein-Barr virus co-infection on natural acquired Plasmodium vivax antibody response. PLoS Negl Trop Dis 2022; 16:e0010305. [PMID: 35921373 PMCID: PMC9377613 DOI: 10.1371/journal.pntd.0010305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt’s Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite.
Methodology/Principal findings
The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission.
Conclusions/Significance
In a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Taís N. de Souza
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Camilla V. Pires
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Talita A. F. Monteiro
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde (IEC/SVS/MS), Belém, Pará, Brazil
| | - Jaap M. Middeldorp
- Department of Pathology, Free University Medical Center, Amsterdam, The Netherlands
| | - Irene S. Soares
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Cor J. F. Fontes
- Julio Müller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luzia H. Carvalho
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
3
|
Abstract
It is well established that by modulating various immune functions, host infection may alter the course of concomitant inflammatory diseases, of both infectious and autoimmune etiologies. Beyond the major impact of commensal microbiota on the immune status, host exposure to viral, bacterial, and/or parasitic microorganisms also dramatically influences inflammatory diseases in the host, in a beneficial or harmful manner. Moreover, by modifying pathogen control and host tolerance to tissue damage, a coinfection can profoundly affect the development of a concomitant infectious disease. Here, we review the diverse mechanisms that underlie the impact of (co)infections on inflammatory disorders. We discuss epidemiological studies in the context of the hygiene hypothesis and shed light on the sometimes dual impact of germ exposure on human susceptibility to inflammatory disease. We then summarize the immunomodulatory mechanisms at play, which can involve pleiotropic effects of immune players and discuss the possibility to harness pathogen-derived compounds to the host benefit.
Collapse
|
4
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Ekemen S, Uzay A, Bassullu N, Dikicioglu-Cetin E, Matsuda K, Ince U, Coban C. Does it take three to tango? An unsuspected multimorbidity of CD8 + T cell lymphoproliferative disorder, malaria, and EBV infection. Malar J 2018; 17:349. [PMID: 30290813 PMCID: PMC6173833 DOI: 10.1186/s12936-018-2497-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is known to cause acute and deadly complications. However, malaria can cause unforeseen pathologies due to its chronicity. It increases the risk of endemic Burkitt Lymphoma development by inducing DNA damage in germinal centre (GC) B cells, and leading higher frequency of Epstein-Barr virus (EBV)-infected cells in GCs. EBV is well known for its tropism for B cells. However, less is known about EBV's interaction with T cells and its association with T cell lymphoma. CASE PRESENTATION A 43-year-old Sudanese male admitted to hospital in Istanbul, Turkey, a non-endemic country, with hyperpigmented painful skin rashes on his whole body. A complete blood count and a peripheral blood smear during admission revealed large granular lymphocytes (LGLs) with abnormally higher CD8 T cell numbers. Additional skin biopsy and pathology results were compatible with CD8+ T cell lymphoproliferative disorder with skin involvement. Patient was treated and discharged. However, a pathologist noticed unusual structures in skin tissue samples. Careful evaluation of skin biopsy samples by polarized microscopy revealed birefringent crystalloid structures resembling malarial haemozoin mainly loaded in macrophages and giant histiocytes. After purification of DNA from the skin biopsy samples, nested PCR was performed for the detection of Plasmodium parasites and Plasmodium falciparum DNA was amplified. Because, the co-presence of EBV infection with malaria is a well-known aetiology of lymphoma, EBV-early RNA (EBER) transcripts were investigated in paraffin-embedded tissue samples and found to be positive in macrophage-like histiocytes. CONCLUSIONS This is a unique case of malaria and EBV infection in a T-LGL lymphoma patient who presented in a non-endemic country. This case emphasizes the clinical importance of EBV monitoring in T-LGL patients with skin involvement. Notably, Plasmodium infection should be examined in patients from malaria endemic regions by pathological and molecular investigations.
Collapse
Affiliation(s)
- Suheyla Ekemen
- Acibadem Pathology Laboratory, Istanbul, Turkey. .,Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.
| | - Ant Uzay
- Department of Internal Medicine, Acibadem University Medical Faculty, Istanbul, Turkey
| | | | | | - Kyoko Matsuda
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Umit Ince
- Acibadem Pathology Laboratory, Istanbul, Turkey.,Department of Pathology, Acibadem University Medical Faculty, Istanbul, Turkey
| | - Cevayir Coban
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Mpina M, Maurice NJ, Yajima M, Slichter CK, Miller HW, Dutta M, McElrath MJ, Stuart KD, De Rosa SC, McNevin JP, Linsley PS, Abdulla S, Tanner M, Hoffman SL, Gottardo R, Daubenberger CA, Prlic M. Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-like Lymphocyte Populations. THE JOURNAL OF IMMUNOLOGY 2017; 199:107-118. [PMID: 28576979 DOI: 10.4049/jimmunol.1601989] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αβ-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design.
Collapse
Affiliation(s)
- Maxmillian Mpina
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, Basel, 4001 Switzerland
| | - Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Masanao Yajima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Chloe K Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Hannah W Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Mukta Dutta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | | | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - John P McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania; and
| | - Marcel Tanner
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, Basel, 4001 Switzerland
| | | | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Claudia A Daubenberger
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; .,University of Basel, Basel, 4001 Switzerland
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
7
|
Williams MV, Cox B, Ariza ME. Herpesviruses dUTPases: A New Family of Pathogen-Associated Molecular Pattern (PAMP) Proteins with Implications for Human Disease. Pathogens 2016; 6:pathogens6010002. [PMID: 28036046 PMCID: PMC5371890 DOI: 10.3390/pathogens6010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
The human herpesviruses are ubiquitous viruses and have a prevalence of over 90% in the adult population. Following a primary infection they establish latency and can be reactivated over a person's lifetime. While it is well accepted that human herpesviruses are implicated in numerous diseases ranging from dermatological and autoimmune disease to cancer, the role of lytic proteins in the pathophysiology of herpesvirus-associated diseases remains largely understudies. Only recently have we begun to appreciate the importance of lytic proteins produced during reactivation of the virus, in particular the deoxyuridine triphosphate nucleotidohydrolases (dUTPase), as key modulators of the host innate and adaptive immune responses. In this review, we provide evidence from animal and human studies of the Epstein-Barr virus as a prototype, supporting the notion that herpesviruses dUTPases are a family of proteins with unique immunoregulatory functions that can alter the inflammatory microenvironment and thus exacerbate the immune pathology of herpesvirus-related diseases including myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Marshall V Williams
- Department of Cancer Biology and Genetics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA.
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH 43210, USA.
| | - Brandon Cox
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH 43210, USA.
| | - Maria Eugenia Ariza
- Department of Cancer Biology and Genetics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA.
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Gentile G, Micozzi A. Speculations on the clinical significance of asymptomatic viral infections. Clin Microbiol Infect 2016; 22:585-8. [PMID: 27450587 DOI: 10.1016/j.cmi.2016.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022]
Abstract
A detailed understanding of asymptomatic chronic viral infections is critical to analyse their pathogenesis, assess the severity and burden of disease and, where required, optimize public health control measures. Recent studies on herpesviruses showed that the host-virus interactions are modulated by co-infections, emphasizing the relevance of co-infections in determining the clinical expression (from asymptomatic to symptomatic infections) and the severity of herpesvirus-associated diseases (either neoplastic or infectious diseases). To demonstrate causality between viruses (virome) and diseases, Koch's postulates should be adapted adding new knowledge on host-microbe relationship and microbial interactions. In the present review we aim to provide an update on asymptomatic chronic infections and criteria for causality and on the virological, immunological and host-virus interactions in asymptomatic chronic infections in human hosts, focusing on herpetic infections.
Collapse
Affiliation(s)
- G Gentile
- Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy.
| | - A Micozzi
- Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| |
Collapse
|