1
|
Khumalo GP, Loa-Kum-Cheung W, Van Wyk BE, Feng Y, Cock IE. Leaf extracts of eight selected southern African medicinal plants modulate pro-inflammatory cytokine secretion in LPS-stimulated RAW 264.7 macrophages. Inflammopharmacology 2024; 32:1607-1620. [PMID: 38310564 PMCID: PMC11006729 DOI: 10.1007/s10787-023-01420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
This study investigates the anti-inflammatory properties of extracts prepared from the leaves of eight southern African medicinal plants used traditionally to treat inflammation and pain. The inhibitory effect of aqueous and ethanol extracts on the release of pro-inflammatory cytokines was determined in lipopolysaccharide (LPS) stimulated and unstimulated RAW 264.7 murine macrophage cells. The levels of interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2 release were determined using cytokine multiplex-bead assays. The ethanol extracts of Melianthus comosus Vahl (commonly known as honey flower), Tetradenia riparia (Hochst.) Codd (misty plume bush) and Warburgia salutaris (G. Bertol.) Chiov. (pepper-bark tree), demonstrated the most significant inhibitory activity, with over 50-fold inhibition of IL-1β, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 macrophages. The aqueous extract of M. comosus also significantly inhibited the secretion of all the tested cytokines and chemokines. Phytochemical investigation of M. comosus ethanol leaf extract using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) led to the detection of crassolide, deoxylimonoic acid D-ring-lactone, 2-hydroxynonanoic acid and 5-noniloxytryptamine. To the best of our knowledge, the cytokine inhibition properties of most of the medicinal plants screened in this study are reported for the first time. Our results support the use of southern African medicinal plants as anti-inflammatory remedies and provide an insight into the immunomodulatory mechanisms of action.
Collapse
Affiliation(s)
- Gugulethu P Khumalo
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
| | - Wendy Loa-Kum-Cheung
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, QLD, 4111, Australia
| | - Ben-Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Yunjiang Feng
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, QLD, 4111, Australia
| | - Ian E Cock
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
| |
Collapse
|
2
|
Ramos-Milaré ÁCFH, Sydor BG, Brustolin AÁ, Lera-Nonose DSSL, Oyama J, Silva EL, Caetano W, Campanholi KSS, Demarchi IG, Silveira TGV, Lonardoni MVC. In vitro effects of lapachol and β-lapachone against Leishmania amazonensis. Braz J Med Biol Res 2023; 56:e12693. [PMID: 37255095 DOI: 10.1590/1414-431x2023e12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
Leishmaniasis is a neglected disease that affects millions of people worldwide, and special attention should be given to treatment because the available drugs have limitations, which can lead to low therapeutic adherence and parasitic resistance. This study evaluated the activity of the bioactive naphthoquinones, lapachol and β-lapachone, against Leishmania amazonensis. The cell alterations were evaluated in vitro on promastigote and amastigote forms. The lethal dose (LD50) at 24, 48, and 72 h on the promastigote's forms using lapachol was 75.60, 72.82, and 58.85 μg/mL and for β-lapachone was 0.65, 1.24, and 0.71 μg/mL, respectively. The naphthoquinones significantly inhibited the survival rate of L. amazonensis amastigotes at 83.11, 57.59, and 34.95% for lapachol (82.28, 41.14, and 20.57 µg/mL), and 78.49, 83.25, and 80.22% for β-lapachone (3.26, 1.63, and 0.815 µg/mL). The compounds on the promastigote's forms led to the loss of mitochondrial membrane potential, induced changes in the integrity of the membrane, caused damage to cells suggestive of the apoptotic process, and showed inhibition of tumor necrosis factor (TNF)-α and interleukin (IL)-6 production. The results showed that these naphthoquinones are promising candidates for research on new drugs with anti-Leishmania activity derived from natural products.
Collapse
Affiliation(s)
- Á C F H Ramos-Milaré
- Programa de Pós-graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - B G Sydor
- Programa de Pós-graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - A Á Brustolin
- Programa de Pós-graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - D S S L Lera-Nonose
- Programa de Pós-graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - J Oyama
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - E L Silva
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - W Caetano
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - K S S Campanholi
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - I G Demarchi
- Departamento de Análises Clínicas, Universidade Estadual de Maringá, Florianópolis, SC, Brasil
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - T G V Silveira
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - M V C Lonardoni
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
3
|
The anti-Leishmania potential of bioactive compounds derived from naphthoquinones and their possible applications. A systematic review of animal studies. Parasitol Res 2022; 121:1247-1280. [PMID: 35190878 DOI: 10.1007/s00436-022-07455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/26/2022] [Indexed: 12/09/2022]
Abstract
Leishmaniasis affects millions of people worldwide, and available treatments have severe limitations. Natural and derivative products are significant sources of innovative therapeutic agents. Naphthoquinones are natural or synthetic chemical compounds with broad biological activity. This systematic review aimed to evaluate the potential anti-Leishmania activity of bioactive compounds derived from naphthoquinones in animal models. Conducted in accordance with PRISMA guidelines, two blocks of MeSH terms were assembled: group I, Leishmania OR Leishmaniasis; group II, Atovaquone OR Lapachol OR Beta lapachone OR Naphthoquinones. The search was performed on PubMed, Web of Science, SCOPUS, EMBASE, and Lilacs databases. Twenty-four articles were retrieved and submitted for quality assessment using the SYRCLE critical appraisal tool. The in vivo anti-Leishmania potential of naphthoquinones was evaluated in visceral and cutaneous leishmaniasis using several measurement parameters. Analyzed compounds varied in structure, association with reference drugs, and encapsulation using a drug delivery system. The study design, including treatment protocol, differed between studies. The findings of the studies in this systematic review indicate the anti-Leishmania potential of naphthoquinones in vivo, with different treatment regimens directed against different Leishmania species. The employed drug delivery systems improve the results concerning selectivity, distribution, and required therapeutic dose. The immunomodulatory action was shown to be beneficial to the host, favoring an adequate immune response against infection by Leishmania parasites since it favored Th1 responses. All studies presented a moderate to high risk of bias. These findings suggest that more studies are needed to assess the overall effectiveness and safety of these treatments.
Collapse
|
4
|
Dinc R. New developments in the treatment of cutaneous leishmaniasis. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.345944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Crotti AEM, Pagotti MC, Candido ACBB, Marçal MG, Vieira TM, Groppo M, Silva MLA, Ferreira DS, Esperandim VR, Magalhães LG. Trypanocidal Activity of Dysphania ambrosioides, Lippia alba, and Tetradenia riparia Essential Oils against Trypanosoma cruzi. Chem Biodivers 2021; 18:e2100678. [PMID: 34669244 DOI: 10.1002/cbdv.202100678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Despite the current treatments against Chagas Disease (CD), this vector-borne parasitic disease remains a serious public health concern. In this study, we have explored the in vitro and/or in vivo trypanocidal and cytotoxic activities of the essential oils (EOs) obtained from Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) (DA-EO), Lippia alba (Mill.) N.E. Brown (Verbenaceae) (LA-EO), and Tetradenia riparia (Hochst.) Codd (Lamiaceae) (TR-EO) grown in Brazil Southeast. DA-EO was the most active against the trypomastigote and amastigote forms in vitro; the IC50 values were 8.7 and 12.2 μg mL-1 , respectively. The EOs displayed moderate toxicity against LLCMK2 cells, but the DA-EO showed high selectivity index (SI) for trypomastigote (SI=33.2) and amastigote (SI=11.7) forms. Treatment with 20 mg/kg DA-EO, LA-EO, or TR-EO for 20 days by intraperitoneal administration reduced parasitemia by 6.36 %, 4.74 %, and 32.68 % on day 7 and by 12.04 %, 27.96 %, and 65.5 % on day 9. These results indicated that DA-EO, LA-EO, and TR-EO have promising trypanocidal potential in vitro, whereas TR-EO has also potential trypanocidal effects in vivo.
Collapse
Affiliation(s)
- Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Mariana C Pagotti
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Candido
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Maria G Marçal
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Tatiana M Vieira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Milton Groppo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcio L A Silva
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Daniele S Ferreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Viviane R Esperandim
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| |
Collapse
|
6
|
Abstract
AbstractThis systematic review investigated the evidence for the therapeutic potential of essential oils (EOs) against Leishmania amazonensis. We searched available scientific publications from 2005 to 2019 in the PubMed and Web of Science electronic databases, according to PRISMA statement. The search strategy utilized descriptors and free terms. The EOs effect of 35 species of plants identified in this systematic review study, 45.7% had half of the maximal inhibitory concentration (IC50) 10 < IC50 ⩽ 50 μg mL−1 and 14.3% had a 10 < IC50μg mL−1 for promastigote forms of L. amazonensis. EOs from Cymbopogon citratus species had the lowest IC50 (1.7 μg mL−1). Among the plant species analyzed for activity against intracellular amastigote forms of L. amazonensis, 39.4% had an IC50 10 < IC50 ⩽ 50 μg mL−1, and 33.3% had an IC50 10 < IC50μg mL−1. Aloysia gratissima EO showed the lowest IC50 (0.16 μg mL−1) for intracellular amastigotes. EOs of Chenopodium ambrosioides, Copaifera martii and Carapa guianensis, administered by the oral route, were effective in reducing parasitic load and lesion volume in L. amazonensis-infected BALB/c mice. EOs of Bixa orellana and C. ambrosioides were effective when administered intraperitoneally. Most of the studies analyzed in vitro and in vivo for the risk of bias showed moderate methodological quality. These results indicate a stimulus for the development of new phytotherapy drugs for leishmaniasis treatment.
Collapse
|
7
|
Oyama J, Lera-Nonose DSSL, Ramos-Milaré ÁCFH, Padilha Ferreira FB, de Freitas CF, Caetano W, Hioka N, Silveira TGV, Lonardoni MVC. Potential of Pluronics ® P-123 and F-127 as nanocarriers of anti-Leishmania chemotherapy. Acta Trop 2019; 192:11-21. [PMID: 30659806 DOI: 10.1016/j.actatropica.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a neglected disease and drugs approved for its treatment often lead to abandonment, failure of therapy and even death. Photodynamic therapy (PDT) has been shown to be a promising, non-invasive and selective for a target region without requiring high-cost technology. Usually, it is employed a photosensitizing agent (PS) incorporated into nanoparticles (NP). Pluronics® P-123 and F-127 micelles are very interesting aqueous NP promoting efficient and selective delivery and less adverse effects. This study aimed to detect the activity of Pluronics® P-123 and F-127 themselves since there is a scarcity of data on these NP activities without drugs incorporation. This study evaluated, in vitro, the activity of Pluronics® against promastigotes and amastigotes of Leishmania amazonensis and also their cytotoxicities. Additionally, the determination of the mitochondria membrane potential in promastigotes, internalization of these Pluronics® in the parasite membrane and macrophages and its stability in the culture medium was evaluated. Results showed that Pluronics® did not cause significant damage to human red cells and promastigotes. The P-123 and F-127 inhibited the survival rate of L. amazonensis amastigotes, and also presented loss of mitochondrial membrane potential on promastigotes. The Pluronics® showed low cytotoxic activity on J774A.1 macrophages, while only P-123 showed moderate cytotoxicity for BALB/c macrophages. The stability of P-123 and F-127 in culture medium was maintained for ten days. In conclusion, the NP studied can be used for incorporating potent leishmanicidal chemotherapy, due to their selectivity towards macrophages, being a promising system for the treatment of cutaneous leishmaniasis.
Collapse
|
8
|
Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6587150. [PMID: 30881596 PMCID: PMC6387720 DOI: 10.1155/2019/6587150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
The term neglected diseases refers to a group of infections caused by various classes of pathogens, including protozoa, viruses, bacteria, and helminths, most often affecting impoverished populations without adequate sanitation living in close contact with infectious vectors and domestic animals. The fact that these diseases were historically not considered priorities for pharmaceutical companies made the available treatments options obsolete, precarious, outdated, and in some cases nonexistent. The use of plants for medicinal, religious, and cosmetic purposes has a history dating back to the emergence of humanity. One of the principal fractions of chemical substances found in plants are essential oils (EOs). EOs consist of a mixture of volatile and hydrophobic secondary metabolites with marked odors, composed primarily of terpenes and phenylpropanoids. They have great commercial value and were widely used in traditional medicine, by phytotherapy practitioners, and in public health services for the treatment of several conditions, including neglected diseases. In addition to the recognized cytoprotective and antioxidative activities of many of these compounds, larvicidal, insecticidal, and antiparasitic activities have been associated with the induction of oxidative stress in parasites, increasing levels of nitric oxide in the infected host, reducing parasite resistance to reactive oxygen species, and increasing lipid peroxidation, ultimately leading to serious damage to cell membranes. The hydrophobicity of these compounds also allows them to cross the membranes of parasites as well as the blood-brain barrier, collaborating in combat at the second stage of several of these infections. Based on these considerations, the aim of this review was to present an update of the potential of EOs, their fractions, and their chemical constituents, against some neglected diseases, including American and African trypanosomiasis, leishmaniasis, and arboviruses, specially dengue.
Collapse
|
9
|
Heidari-Kharaji M, Fallah-Omrani V, Badirzadeh A, Mohammadi-Ghalehbin B, Nilforoushzadeh MA, Masoori L, Montakhab-Yeganeh H, Zare M. Sambucus ebulus
extract stimulates cellular responses in cutaneous leishmaniasis. Parasite Immunol 2018; 41:e12605. [DOI: 10.1111/pim.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Vahid Fallah-Omrani
- Cellular and Molecular Biology Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Behnam Mohammadi-Ghalehbin
- Department of Microbiology and Medical Parasitology; School of Medicine; Ardabil University of Medical Sciences; Ardabil Iran
| | | | - Leila Masoori
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Hossein Montakhab-Yeganeh
- Department of Clinical Biochemistry; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Mehrak Zare
- Skin and Stem Cell Research Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
10
|
Terron-Monich MDS, Demarchi IG, da Silva PRF, Ramos-Milaré ÁCFH, Gazim ZC, Silveira TGV, Lonardoni MVC. 6,7-Dehydroroyleanone diterpene derived from Tetradenia riparia essential oil modulates IL-4/IL-12 release by macrophages that are infected with Leishmania amazonensis. Parasitol Res 2018; 118:369-376. [DOI: 10.1007/s00436-018-6166-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
|
11
|
Van Puyvelde L, Liu M, Veryser C, De Borggraeve WM, Mungarulire J, Mukazayire MJ, Luyten W. Active principles of Tetradenia riparia. IV. Anthelmintic activity of 8(14),15-sandaracopimaradiene-7α,18-diol. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:229-232. [PMID: 29366765 DOI: 10.1016/j.jep.2018.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetradenia (T.) riparia (Hochst.) Codd (Lamiaceae), formerly known as Iboza riparia (Hochst.) N.E.Br., is one of the most frequently used medicinal plants in traditional Rwandese medicine. It was used as a remedy against a wide range of diseases including malaria, angina, yaws, dental abscesses, headache, worm infections and several kinds of fevers and aches. AIM OF THE STUDY This study aims to identify the compounds active against helminths from Tetradenia riparia. METHODS A bioassay-guided isolation of anthelmintic compounds from the leaves of Tetradenia riparia was performed using a Caenorhabditis elegans (C. elegans) testing model. RESULTS The bioassay-guided isolation led to one active compound, i.e. 8(14),15-sandaracopimaradiene-7α,18-diol. Its IC50 value was 5.4 ± 0.9 µg/mL (17.8 ± 2.9 µM). CONCLUSIONS We identified the bioactive compound from Tetradenia riparia responsible for its anthelmintic activity: 8(14),15-sandaracopimaradiene-7α,18-diol. Although the compound and several of its bioactivities have been described before, this is the first report of its anthelmintic effect.
Collapse
Affiliation(s)
- Luc Van Puyvelde
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium
| | - Maoxuan Liu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, box 921, 3000 Leuven, Belgium.
| | - Cedrick Veryser
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3000 Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3000 Leuven, Belgium
| | - Joseph Mungarulire
- National Industrial Research and Development Agency, Kigali City Tower, 13th Floor, PO box 273, Kigali, Rwanda
| | - Marie Jeanne Mukazayire
- National Industrial Research and Development Agency, Kigali City Tower, 13th Floor, PO box 273, Kigali, Rwanda
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Calophyllum brasiliense Modulates the Immune Response and Promotes Leishmania amazonensis Intracellular Death. Mediators Inflamm 2018; 2018:6148351. [PMID: 29670464 PMCID: PMC5833474 DOI: 10.1155/2018/6148351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
Calophyllum brasiliense is a plant from the Brazilian rain forests and has been used in folk medicine for the treatment of various diseases, including leishmaniasis. This infectious disease depends on the Leishmania sp. and the host immune response. C. brasiliense antileishmanial activity is well known, but the effects on immune response remain to be investigated. This study showed the leishmanicidal and immunomodulatory effects of a 30 μg/mL of hydroalcoholic extract of C. brasiliense in murine macrophages before and after Leishmania (Leishmania) amazonensis infection. The semiquantitative cytokine RNA expression was determined by RT-PCR and the anti-Leishmania activity was measured by infection index (IF). Hydroalcoholic extract of C. brasiliense reduced more than 95% of IF when used before and after Leishmania infection, with 3 and 24 h of treatment (p < 0.05). C. brasiliense inhibited or reduced significantly (p < 0.05) the TNF-α, IL-1β, IL-18, and IL-10 mRNA expression. The antileishmanial and anti-inflammatory effects showed the potential of C. brasiliense as an alternative therapy for leishmaniasis and it must be investigated.
Collapse
|
13
|
Abstract
AbstractEssential oils (EOs) exhibit a wide range of pharmacological properties, which have been reported over the years in various studies. The aim of this literature review is to present the latest findings of the immunomodulatory effects of EOs. From 2008 to 2016in vivo- and/orin vitro-studies, most of which were published in the last couple of years, have been selected based on their topic relevance, namely immunomodulatory, anti-inflammatory, antileishmanial, antiallergic, and anticancer effects of various EOs. These findings show modulation of pro- and anti-inflammatory cytokines, antiproliferative, chemotactic properties and also exert antiparasitic effects by inhibiting the pro, axenic and intramacrophagic amastigote forms of Leishmania parasites or by modulating the TH1 and TH2 immune responses. Furthermore, the EOs of some plants show the ability to reduce the mast cell degranulation and improve the airway inflammation and mucus obstruction in the cases of immediate hypersensitivity in murine models. Additionally, the cytotoxicity of some EOs against human melanoma, hepatoma, lung, prostate and breast cancer cell lines proposed their potential antitumor effect by an increased immunosuppressive (cytostatic) activity.
Collapse
|