1
|
Arora N, Keshri AK, Kaur R, Rawat SS, Kumar R, Mishra A, Prasad A. Taenia solium excretory secretory proteins (ESPs) suppresses TLR4/AKT mediated ROS formation in human macrophages via hsa-miR-125. PLoS Negl Trop Dis 2023; 17:e0011858. [PMID: 38157380 PMCID: PMC10783723 DOI: 10.1371/journal.pntd.0011858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/11/2024] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Helminth infections are a global health menace affecting 24% of the world population. They continue to increase global disease burden as their unclear pathology imposes serious challenges to patient management. Neurocysticercosis is classified as neglected tropical disease and is caused by larvae of helminthic cestode Taenia solium. The larvae infect humans and localize in central nervous system and cause NCC; a leading etiological agent of acquired epilepsy in the developing world. The parasite has an intricate antigenic make-up and causes active immune suppression in the residing host. It communicates with the host via its secretome which is complex mixture of proteins also called excretory secretory products (ESPs). Understanding the ESPs interaction with host can identify therapeutic intervention hot spots. In our research, we studied the effect of T. solium ESPs on human macrophages and investigated the post-translation switch involved in its immunopathogenesis. METHODOLOGY T. solium cysts were cultured in vitro to get ESPs and used for treating human macrophages. These macrophages were studied for cellular signaling and miR expression and quantification at transcript and protein level. CONCLUSION We found that T. solium cyst ESPs treatment to human macrophages leads to activation of Th2 immune response. A complex cytokine expression by macrophages was also observed with both Th1 and Th2 cytokines in milieu. But, at the same time ESPs modulated the macrophage function by altering the host miR expression as seen with altered ROS activity, apoptosis and phagocytosis. This leads to activated yet compromised functional macrophages, which provides a niche to support parasite survival. Thus T. solium secretome induces Th2 phenomenon in macrophages which may promote parasite's survival and delay their recognition by host immune system.
Collapse
Affiliation(s)
- Naina Arora
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Anand K. Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rimanpreet Kaur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Suraj S. Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute for Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
2
|
Baquedano LE, Bernal EG, Carrion DJ, Delgado AD, Gavidia CM, Kirwan DE, Gilman RH, Verastegui MR. Impaired spatial working memory and reduced hippocampal neuronal density in a rat model of neurocysticercosis. Front Cell Neurosci 2023; 17:1183322. [PMID: 37323586 PMCID: PMC10267319 DOI: 10.3389/fncel.2023.1183322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Neurocysticercosis (NCC) is the most common parasitic disease affecting the nervous system and is a leading cause of acquired epilepsy worldwide, as well as cognitive impairment, especially affecting memory. The aim of this study was to evaluate the effect of NCC on spatial working memory and its correlation with hippocampal neuronal density, in a rat model of NCC. This experimental study was conducted on female (n = 60) and male (n = 73) Holtzman rats. NCC was induced by intracranial inoculation of T. solium oncospheres in 14 day-old-rats. Spatial working memory was assessed using the T-maze test at 3, 6, 9, and 12 months post-inoculation, and sensorimotor evaluation was performed at 12 months post-inoculation. Hippocampal neuronal density was evaluated by immunostaining of NeuN-positive cells of the CA1 region. Of the rats inoculated with T. solium oncospheres, 87.2% (82/94) developed NCC. The study showed a significant decline in spatial working memory over a 1-year follow-up period in rats experimentally infected with NCC. Males showed an early decline that started at 3 months, while females demonstrated it at 9 months. Additionally, a decrease in neuronal density was observed in the hippocampus of NCC-infected rats, with a more significant reduction in rats with cysts in the hippocampus than in rats with cysts in other brain areas and control rats. This rat model of NCC provides valuable support for the relationship between neurocysticercosis and spatial working memory deficits. Further investigations are required to determine the mechanisms involved in cognitive impairment and establish the basis for future treatments.
Collapse
Affiliation(s)
- Laura E. Baquedano
- Parasitological Diagnostic Laboratory, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- The Cysticercosis Working Group in Peru, Lima, Peru
| | - Edson G. Bernal
- The Cysticercosis Working Group in Peru, Lima, Peru
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Daniel J. Carrion
- School of Psychology, Faculty of Philosophy and Human Sciences, Universidad Antonio Ruiz de Montoya, Lima, Peru
| | - Ana D. Delgado
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cesar M. Gavidia
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- The Cysticercosis Working Group in Peru, Lima, Peru
| | - Daniela E. Kirwan
- Infection and Immunity Research Institute, St George’s University of London, London, United Kingdom
| | - Robert H. Gilman
- The Cysticercosis Working Group in Peru, Lima, Peru
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, United States
| | - Manuela R. Verastegui
- The Cysticercosis Working Group in Peru, Lima, Peru
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociación Benéfica PRISMA, Lima, Peru
| |
Collapse
|
3
|
Garcia HH, Verastegui MR, Arroyo G, Bustos JA, Gilman RH. New animal models of neurocysticercosis can help understand epileptogenesis in neuroinfection. Front Mol Neurosci 2022; 15:1039083. [PMID: 36466808 PMCID: PMC9708716 DOI: 10.3389/fnmol.2022.1039083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hector H. Garcia
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru,Cysticercosis Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru,Asociación Benéfica PRISMA, Lima, Peru,*Correspondence: Hector H. Garcia
| | - Manuela R. Verastegui
- Alberto Cazorla School of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gianfranco Arroyo
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru,Cysticercosis Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Javier A. Bustos
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru,Cysticercosis Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | |
Collapse
|
4
|
Fan X, Zhang Y, Ouyang R, Luo B, Li L, He W, Liu M, Jiang N, Yang F, Wang L, Zhou B. Cysticercus cellulosae Regulates T-Cell Responses and Interacts With the Host Immune System by Excreting and Secreting Antigens. Front Cell Infect Microbiol 2021; 11:728222. [PMID: 34540719 PMCID: PMC8447960 DOI: 10.3389/fcimb.2021.728222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cysticercus cellulosae (C. cellulosae) excretes and secretes antigens during the parasitic process to regulate the host immune response; however, resulting immune response and cytokine production in the host during infection still remains unclear. We used C. cellulosae crude antigens (CAs) as controls to explore the effect of excretory secretory antigens (ESAs) on T-cell immune responses in piglets. C. cellulosae ESAs induced imbalanced CD4+/CD8+ T-cell proportions, increased the CD4+Foxp3+ and CD8+Foxp3+ T-cell frequencies, and induced lymphocytes to produce interleukin-10, which was mainly attributed to CD4+ and CD4-CD8- T cells. The ESAs also induced Th2-type immune responses. The results showed that the ability of C. cellulosae to escape the host immune attacks and establish a persistent infection may be related to host immune response regulation by the ESAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Biying Zhou
- Department of Parasitology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Kaur R, Arora N, Rawat SS, Keshri AK, Sharma SR, Mishra A, Singh G, Prasad A. Vaccine for a neglected tropical disease Taenia solium cysticercosis: fight for eradication against all odds. Expert Rev Vaccines 2021; 20:1447-1458. [PMID: 34379534 DOI: 10.1080/14760584.2021.1967750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Taenia solium infection is among the 17 most neglected tropical diseases identified by World Health Organization and to be eradicated by 2030. This parasite infects the central nervous system (Neurocysticercosis [NCC]) and intestine [Taeniasis]). NCC is the most frequent cause of acquired epilepsy in endemic regions and Taeniasis is responsible for the widespread malnutrition and abdominal discomfort among children. Epilepsy caused by T. solium is preventable and the total elimination of NCC can be achieved by good hygiene, mass therapy, and most importantly vaccination of pigs or humans. Vaccine for pig is available but not widely in use and for humans it's still elusive. AREA COVERED Several vaccine candidates for porcine cysticercosis have been tried like TSOL18, SP3Vac, KETc7, TSOL45, etc. with good success in the limited field trial. This review highlights some seminal contributions for the anti-cestode vaccine, the associated challenges, current status, suggestive future directions, and the need of vaccine for human use. EXPERT OPINION Though several vaccines are available, none is being widely used due to lack of awareness, economic constraints, accessibility, etc. Hence, there is a need for a newer, economic, and reliable vaccine for humans or pigs use to reduce the disease burden.
Collapse
Affiliation(s)
- Rimanpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Suraj S Rawat
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Anand Kumar Keshri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Shubha Rani Sharma
- Department of Bio-Engineering, Birla Institute of Technology, Ranchi-Jharkhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Gagandeep Singh
- Department of Neurology, Dayanad Medical College, Ludhiana, Punjab, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
6
|
Hamamoto Filho PT, Fragoso G, Sciutto E, Fleury A. Inflammation in neurocysticercosis: clinical relevance and impact on treatment decisions. Expert Rev Anti Infect Ther 2021; 19:1503-1518. [PMID: 33794119 DOI: 10.1080/14787210.2021.1912592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Neurocysticercosis is caused by the localization of Taenia solium larvae in the central nervous system. The disease remains endemic in most countries of Latin America, Asia and Africa. While major improvements have been made in its diagnosis and treatment, uncertainties persist regarding the clinical implications and treatment of the inflammatory reaction associated with the disease. AREAS COVERED In this review, based on PubMed searches, the authors describe the characteristics of the immune-inflammatory response in patients with neurocysticercosis, its clinical implications and the treatment currently administered. The dual role of inflammation (participating in both, the death of the parasite, and the precipitation of serious complications) is discussed. New therapeutic strategies of potential interest are presented. EXPERT OPINION Inflammatory reaction is the main pathogenic mechanism associated to neurocysticercosis. Its management is mainly based on corticosteroids administration. This strategy had improved prognostic of patients as it allows for the control of most of the inflammatory complications. On the other side, it might be involved in the persistence of parasites in some patients, despite cysticidal treatment, due to its immunosuppressive properties. New strategies are needed to improve therapeutical management, particularly in the severest presentations.
Collapse
Affiliation(s)
- Pedro T Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, UNESP-Univ Estadual Paulista, Botucatu Medical School, Botucatu, Brazil
| | - Gladis Fragoso
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Edda Sciutto
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Agnès Fleury
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Neurocysticercosis Clinic, Instituto Nacional de Neurología Y Neurocirugía, Ciudad de México, Mexico, mexico.,Neuroinflammation Unit, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México/INNN/Facultad de Medicina-UNAM, Ciudad de México, Mexico
| |
Collapse
|
7
|
Evaluation of Taenia solium cyst fluid-based enzyme linked immunoelectro transfer blot for Neurocysticercosis diagnosis in urban and highly endemic rural population of North India. Clin Chim Acta 2020; 508:16-21. [DOI: 10.1016/j.cca.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023]
|
8
|
Arora N, Raj A, Anjum F, Kaur R, Rawat SS, Kumar R, Tripathi S, Singh G, Prasad A. Unveiling Taenia solium kinome profile and its potential for new therapeutic targets. Expert Rev Proteomics 2020; 17:85-94. [DOI: 10.1080/14789450.2020.1719835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Anand Raj
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
- Department of Biotechnology, Motilal Nehru Institute of Technology, Allahabad, India
| | - Farhan Anjum
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rimanpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Suraj Singh Rawat
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Shweta Tripathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College, Ludhiana, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
9
|
Hamamoto Filho PT, Fogaroli MO, Oliveira MAC, Oliveira CC, Batah SS, Fabro AT, Vulcano LC, Bazan R, Zanini MA. A Rat Model of Neurocysticercosis-Induced Hydrocephalus: Chronic Progressive Hydrocephalus with Mild Clinical Impairment. World Neurosurg 2019; 132:e535-e544. [PMID: 31470163 DOI: 10.1016/j.wneu.2019.08.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Hydrocephalus is the most common complication of extraparenchymal neurocysticercosis, combining obstructive and inflammatory mechanisms that impair cerebrospinal fluid circulation. METHODS We studied the long-term progression of neurocysticercosis-induced hydrocephalus in a rat model. We generated an experimental rat model of neurocysticercosis-induced hydrocephalus by cisternal inoculation of cysts or antigens of Taenia crassiceps and compared it with the classic model of kaolin-induced hydrocephalus. We used 52 animals divided into 4 groups: 1) control, 2) neurocysticercosis-induced hydrocephalus by cysts or 3) by antigens, and 4) kaolin-induced hydrocephalus. We studied behavioral, radiologic, and morphologic alterations at 1 and 6 months after inoculation by open field test, magnetic resonance imaging, and immunohistochemical localization of aquaporin-4 (AQP-4). RESULTS Behavioral changes were observed later in neurocysticercosis-induced than in kaolin-induced hydrocephalic rats (P = 0.023). The ventricular volume of hydrocephalus induced by experimental neurocysticercosis progressively evolved, with the magnetic resonance imaging changes being similar to those observed in humans. Periventricular inflammatory and astrocytic reactions were also observed. AQP-4 expression was higher in the sixth than in the first month after inoculation (P = 0.016) and also occurred in animals that received antigen inoculation but did not develop hydrocephalus, suggesting that AQP-4 may constitute an alternative route of cerebrospinal fluid absorption under inflammatory conditions. CONCLUSIONS Our neurocysticercosis-induced hydrocephalus model allows for the long-term maintenance of hydrocephalic animals, involving mild clinical performance impairments, including body weight and behavioral changes.
Collapse
Affiliation(s)
- Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, UNESP-Univ Estadual Paulista, Botucatu Medical School, São Paulo, Brazil.
| | - Marcelo Ortolani Fogaroli
- Department of Neurology, Psychology and Psychiatry, UNESP-Univ Estadual Paulista, Botucatu Medical School, São Paulo, Brazil
| | | | | | - Sabrina Setembre Batah
- Department of Pathology and Legal Medicine, USP-Univ São Paulo, Ribeirão Preto Medical School, São Paulo, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, USP-Univ São Paulo, Ribeirão Preto Medical School, São Paulo, Brazil
| | - Luiz Carlos Vulcano
- Department of Animal Reproduction and Veterinary Radiology, UNESP-Univ Estadual Paulista, School of Veterinary Medicine and Animal Science, São Paulo, Brazil
| | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry, UNESP-Univ Estadual Paulista, Botucatu Medical School, São Paulo, Brazil
| | - Marco Antônio Zanini
- Department of Neurology, Psychology and Psychiatry, UNESP-Univ Estadual Paulista, Botucatu Medical School, São Paulo, Brazil
| |
Collapse
|
10
|
Hydrocephalus in Neurocysticercosis: Challenges for Clinical Practice and Basic Research Perspectives. World Neurosurg 2019; 126:264-271. [DOI: 10.1016/j.wneu.2019.03.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/19/2022]
|
11
|
Mejia Maza A, Carmen-Orozco RP, Carter ES, Dávila-Villacorta DG, Castillo G, Morales JD, Mamani J, Gavídia CM, Alroy J, Sterling CR, Gonzalez AE, García HH, Woltjer RL, Verástegui MR, Gilman RH. Axonal swellings and spheroids: a new insight into the pathology of neurocysticercosis. Brain Pathol 2018; 29:425-436. [PMID: 30368965 DOI: 10.1111/bpa.12669] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
Neurocysticercosis is a parasitic brain disease caused by the larval form (Cysticercus cellulosae) of Taenia solium and is the leading cause of preventable epilepsy worldwide. However, the pathophysiology and relation to the wide range of clinical features remains poorly understood. Axonal swelling is emerging as an important early pathological finding in multiple neurodegenerative diseases and as a cause of brain injury, but has not been well described in neurocysticercosis. Histological analysis was performed on human, rat and porcine NCC brain specimens to identify axonal pathology. Rat infection was successfully carried out via two routes of inoculation: direct intracranial injection and oral feeding. Extensive axonal swellings, in the form of spheroids, were observed in both humans and rats and to a lesser extent in pigs with NCC. Spheroids demonstrated increased immunoreactivity to amyloid precursor protein and neurofilament indicating probable impairment of axonal transport. These novel findings demonstrate that spheroids are present in NCC which is conserved across species. Not only is this an important contribution toward understanding the pathogenesis of NCC, but it also provides a model to analyze the association of spheroids with specific clinical features and to investigate the reversibility of spheroid formation with antihelminthic treatment.
Collapse
Affiliation(s)
- Alan Mejia Maza
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rogger P Carmen-Orozco
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Emma S Carter
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Danitza G Dávila-Villacorta
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gino Castillo
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jemina D Morales
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Javier Mamani
- Faculty of Veterinary Medicine and Animal Husbandry, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cesar M Gavídia
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Joseph Alroy
- Department of Pathology, Tufts University School of Medicine and Tufts-New England Medical Center, Boston, MA
| | - Charles R Sterling
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Armando E Gonzalez
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Héctor H García
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú.,Cysticercosis Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Randy L Woltjer
- Department of Pathology, Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR
| | - Manuela R Verástegui
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Robert H Gilman
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú.,The Department of International Health, Bloomberg School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD.,Asociación Benéfica PRISMA, Lima, Perú
| | | |
Collapse
|
12
|
Abstract
Neurocysticercosis (NCC) occurs following brain infection by larvae of the cestode Taenia solium. It is the leading cause of preventable epilepsy worldwide and therefore constitutes a critical health challenge with significant global relevance. Despite this, much is still unknown about many key pathogenic aspects of the disease, including how cerebral infection with T. solium results in the development of seizures. Over the past century, valuable mechanistic insights have been generated using both clinical studies and animal models. In this review, we critically assess model systems for investigating disease processes in NCC. We explore the respective strengths and weaknesses of each model and summarize how they have contributed to current knowledge of the disease. We call for the continued development of animal models of NCC, with a focus on novel strategies for understanding this debilitating but often neglected disorder.
Collapse
|
13
|
Carmen-Orozco RP, Dávila-Villacorta DG, Cauna Y, Bernal-Teran EG, Bitterfeld L, Sutherland GL, Chile N, Céliz RH, Ferrufino-Schmidt MC, Gavídia CM, Sterling CR, García HH, Gilman RH, Verástegui MR. Blood-brain barrier disruption and angiogenesis in a rat model for neurocysticercosis. J Neurosci Res 2018; 97:137-148. [PMID: 30315659 DOI: 10.1002/jnr.24335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Neurocysticercosis (NCC) is a helminth infection affecting the central nervous system caused by the larval stage (cysticercus) of Taenia solium. Since vascular alteration and blood-brain barrier (BBB) disruption contribute to NCC pathology, it is postulated that angiogenesis could contribute to the pathology of this disease. This study used a rat model for NCC and evaluated the expression of two angiogenic factors called vascular endothelial growth factor (VEGF-A) and fibroblast growth factor (FGF2). Also, two markers for BBB disruption, the endothelial barrier antigen and immunoglobulin G, were evaluated using immunohistochemical and immunofluorescence techniques. Brain vasculature changes, BBB disruption, and overexpression of angiogenesis markers surrounding viable cysts were observed. Both VEGF-A and FGF2 were overexpressed in the tissue surrounding the cysticerci, and VEGF-A was overexpressed in astrocytes. Vessels showed decreased immunoreactivity to endothelial barrier antigen marker and an extensive staining for IgG was found in the tissues surrounding the cysts. Additionally, an endothelial cell tube formation assay using human umbilical vein endothelial cells showed that excretory and secretory antigens of T. solium cysticerci induce the formation of these tubes. This in vitro model supports the hypothesis that angiogenesis in NCC might be caused by the parasite itself, as opposed to the host inflammatory responses alone. In conclusion, brain vasculature changes, BBB disruption, and overexpression of angiogenesis markers surrounding viable cysts were observed. This study also demonstrates that cysticerci excretory-secretory processes alone can stimulate angiogenesis.
Collapse
Affiliation(s)
- Rogger P Carmen-Orozco
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Danitza G Dávila-Villacorta
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Yudith Cauna
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Edson G Bernal-Teran
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Leandra Bitterfeld
- The Department of International Health, Bloomberg School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland
| | - Graham L Sutherland
- The Department of International Health, Bloomberg School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland
| | - Nancy Chile
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rensson H Céliz
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - María C Ferrufino-Schmidt
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Cesar M Gavídia
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Charles R Sterling
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Héctor H García
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú.,Cysticercosis Unit, Instituto de Nacional Ciencias Neurológicas, Lima, Perú
| | - Robert H Gilman
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú.,The Department of International Health, Bloomberg School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland.,Asociación Benéfica PRISMA, Lima, Perú
| | - Manuela Renee Verástegui
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
14
|
Alroy KA, Arroyo G, Gilman RH, Gonzales-Gustavson E, Gallegos L, Gavidia CM, Verastegui M, Rodriguez S, Lopez T, Gomez-Puerta LA, Alroy J, Garcia HH, Gonzalez AE, For The Cysticercosis Working Group In Peru. Carotid Taenia solium Oncosphere Infection: A Novel Porcine Neurocysticercosis Model. Am J Trop Med Hyg 2018; 99:380-387. [PMID: 29893202 DOI: 10.4269/ajtmh.17-0912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurocysticercosis (NCC), the infection of the human central nervous system (CNS) with larval cysts of Taenia solium causes widespread neurological morbidity. Animal models are crucial for studying the pathophysiology and treatment of NCC. Some drawbacks of current NCC models include differences in the pathogenesis of the model and wild-type parasite, low rates of infection efficiency and lack of reproducibility. We describe a novel porcine model that recreates infection in the CNS with high efficiency. Activated oncospheres, either in a high (45,000-50,000) or low (10,000) dose were inoculated in the common carotid artery of 12 pigs by ultrasound-guided catheterization. Following oncosphere injection, either a high (30 mL) or low (1-3 mL) volume of saline flush was also administered. Cyst burden in the CNS was evaluated independently according to oncosphere dose and flush volume. Neurocysticercosis was achieved in 8/12 (66.7%) pigs. Cyst burden in the CNS of pigs was higher in the high versus the low oncosphere dose category (median: 4.5; interquartile ranges [IQR]: 1-8 and median: 1; IQR: 0-4, respectively) and in the high versus the low flush volume category (median 5.5; IQR: 1-8 and median: 1; IQR: 0-2, respectively), although not statistically different. All cysts in the CNS were viable, whereas both viable and degenerated cysts were found in the musculature. Carotid injection of activated oncospheres in pigs is effective in reproducing NCC. Oncosphere entry into the CNS by way of vasculature mimics wild-type infection, and provides a useful alternative for future investigations on the pathogenesis and antiparasitic treatment of NCC.
Collapse
Affiliation(s)
- Karen A Alroy
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Gianfranco Arroyo
- School of Public Health and Management, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Linda Gallegos
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Cesar M Gavidia
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Manuela Verastegui
- Departments of Pathology, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Silvia Rodriguez
- Microbiology of the School of Science, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Teresa Lopez
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Luis A Gomez-Puerta
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Joseph Alroy
- School of Medicine, Tufts University, Boston, Massachusetts
| | - Hector H Garcia
- Microbiology of the School of Science, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Armando E Gonzalez
- Microbiology of the School of Science, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | |
Collapse
|
15
|
Understanding host-parasite relationship: the immune central nervous system microenvironment and its effect on brain infections. Parasitology 2017; 145:988-999. [PMID: 29231805 DOI: 10.1017/s0031182017002189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The central nervous system (CNS) has been recognized as an immunologically specialized microenvironment, where immune surveillance takes a distinctive character, and where delicate neuronal networks are sustained by anti-inflammatory factors that maintain local homeostasis. However, when a foreign agent such as a parasite establishes in the CNS, a set of immune defences is mounted and several immune molecules are released to promote an array of responses, which ultimately would control the infection and associated damage. Instead, a host-parasite relationship is established, in the context of which a close biochemical coevolution and communication at all organization levels between two complex organisms have developed. The ability of the parasite to establish in its host is associated with several evasion mechanisms to the immune response and its capacity for exploiting host-derived molecules. In this context, the CNS is deeply involved in modulating immune functions, either protective or pathogenic, and possibly in parasitic activity as well, via interactions with evolutionarily conserved molecules such as growth factors, neuropeptides and hormones. This review presents available evidence on some examples of CNS parasitic infections inducing different morbi-mortality grades in low- or middle-income countries, to illustrate how the CNS microenvironment affect pathogen establishment, growth, survival and reproduction in immunocompetent hosts. A better understanding of the influence of the CNS microenvironment on neuroinfections may provide relevant insights into the mechanisms underlying these pathologies.
Collapse
|
16
|
Gutierrez-Loli R, Orrego MA, Sevillano-Quispe OG, Herrera-Arrasco L, Guerra-Giraldez C. MicroRNAs in Taenia solium Neurocysticercosis: Insights as Promising Agents in Host-Parasite Interaction and Their Potential as Biomarkers. Front Microbiol 2017; 8:1905. [PMID: 29033926 PMCID: PMC5626859 DOI: 10.3389/fmicb.2017.01905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are short, endogenous, non-coding, single-stranded RNAs involved in post-transcriptional gene regulation. Although, several miRNAs have been identified in parasitic helminths, there is little information about their identification and function in Taenia. Furthermore, the impact of miRNAs in neurocysticercosis, the brain infection caused by larvae of Taenia solium is still unknown. During chronic infection, T. solium may activate numerous mechanisms aimed to modulate host immune responses. Helminthic miRNAs might also have effects on host mRNA expression and thus play an important role regulating host-parasite interactions. Also, the diagnosis of this disease is difficult and it usually requires neuroimaging and confirmatory serology. Since miRNAs are stable when released, they can be detected in body fluids and therefore have potential to diagnose infection, determine parasite burden, and ascertain effectiveness of treatment or disease progression, for instance. This review discusses the potential roles of miRNAs in T. solium infection, including regulation of host-parasite relationships and their eventual use as diagnostic or disease biomarkers. Additionally, we summarize the bioinformatics resources available for identification of T. solium miRNAs and prediction of their targets.
Collapse
Affiliation(s)
- Renzo Gutierrez-Loli
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Miguel A Orrego
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Oscar G Sevillano-Quispe
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis Herrera-Arrasco
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cristina Guerra-Giraldez
- Neurocysticercosis Lab, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|