1
|
Su XY, Gao F, Wang SY, Li J, Wang ZQ, Zhang X. Annexin gene family in Spirometra mansoni (Cestoda: Diphyllobothriidae) and its phylogenetic pattern among Platyhelminthes of medical interest. Parasite 2024; 31:32. [PMID: 38912916 PMCID: PMC11195529 DOI: 10.1051/parasite/2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
The plerocercoid larvae of Spirometra mansoni are etiological agents of human and animal sparganosis. Annexins are proteins with important roles in parasites. However, our knowledge of annexins in S. mansoni is still inadequate. In this study, 18 new members of the Annexin (ANX) family were characterized in S. mansoni. The clustering analysis demonstrated that all the SmANXs were divided into two main classes, consistent with the patterns of conserved motif organization. The 18 SmANXs were detected at all developmental stages (plerocercoid, adult, and egg) and displayed ubiquitous but highly variable expression patterns in all tissues/organs studied. The representative member rSmANX18 was successfully cloned and expressed. The protein was immunolocalized in the tegument and parenchyma of the plerocercoid and in the tegument, parenchyma, uterus and egg shell of adult worms. The recombinant protein can bind phospholipids with high affinity in a Ca2+-dependent manner, shows high anticoagulant activity and combines with FITC to recognize apoptotic cells. Annexin gene polymorphism and conservative core motif permutation were found in both cestodes and trematodes. SmANXs also revealed high genetic diversity among Platyhelminthes of medical interest. Our findings lay a foundation for further studies on the biological functions of ANXs in S. mansoni as well as other taxa in which ANXs occur.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450051 PR China
| |
Collapse
|
2
|
Zhong H, Hou L, Qin F, Ren Y, Dong B, Zhu D, Li H, Lu K, Fu Z, Liu J, Gu S, Jin Y. Molecular and functional characterization of Schistosoma japonicum annexin A13. Vet Res 2023; 54:116. [PMID: 38049816 PMCID: PMC10696758 DOI: 10.1186/s13567-023-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects humans and animals in tropical and subtropical regions worldwide. Schistosome eggs are responsible for the pathogenesis and transmission of schistosomiasis, thus reducing egg production is vital for prevention and control of schistosomiasis. However, the mechanisms underlying schistosome reproduction remain unclear. Annexin proteins (ANXs) are involved in the physiological and pathological functions of schistosomes, but the specific regulatory mechanisms and roles of ANX A13 in the development of Schistosoma japonicum and host-parasite interactions remain poorly understood. Therefore, in this study, the expression profiles of SjANX A13 at different life cycle stages of S. japonicum were assessed using quantitative PCR. In addition, the expression profiles of the homolog in S. mansoni were analyzed in reference to public datasets. The results of RNA interference showed that knockdown of SjANX A13 significantly affected the development and egg production of female worms in vivo. The results of an immune protection assay showed that recombinant SjANX A13 increased production of immunoglobulin G-specific antibodies. Finally, co-culture of S. japonicum exosomes with LX-2 cells using a transwell system demonstrated that SjANX A13 is involved in host-parasite interactions via exosomes. Collectively, these results will help to clarify the roles of SjANX A13 in the development of S. japonicum and host-parasite interactions as a potential vaccine candidate.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ling Hou
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Fanglin Qin
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaopeng Gu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
3
|
Ancarola ME, Maldonado LL, García LCA, Franchini GR, Mourglia-Ettlin G, Kamenetzky L, Cucher MA. A Comparative Analysis of the Protein Cargo of Extracellular Vesicles from Helminth Parasites. Life (Basel) 2023; 13:2286. [PMID: 38137887 PMCID: PMC10744797 DOI: 10.3390/life13122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Lucas L. Maldonado
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073, Argentina
| | - Lucía C. A. García
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Gisela R. Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), La Plata B1900, Argentina;
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina;
| | - Marcela A. Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| |
Collapse
|
4
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The most prominent modulated annexins during parasitic infections. Acta Trop 2023; 243:106942. [PMID: 37172709 DOI: 10.1016/j.actatropica.2023.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Annexins (ANXs) exert different functions in cell biological and pathological processes and are thus known as double or multi-faceted proteins. These sophisticated proteins might express on both parasite structure and secretion and in parasite-infected host cells. In addition to the characterization of these pivotal proteins, describing their mechanism of action can be also fruitful in recognizing their roles in the pathogenesis of parasitic infections. Accordingly, this study presents the most prominent ANXs thus far identified and their relevant functions in parasites and infected host cells during pathogenesis, especially in the most important intracellular protozoan parasitic infections including leishmaniasis, toxoplasmosis, malaria and trypanosomiasis. The data provided in this study demonstrate that the helminth parasites most probably express and secret ANXs to develop pathogenesis while the modulation of the host-ANXs could be employed as a crucial strategy by intracellular protozoan parasites. Moreover, such data highlight that the use of analogs of both parasite and host ANX peptides (which mimic or regulate ANXs physiological functions through various strategies) might suggest novel therapeutic insights into the treatment of parasitic infections. Furthermore, due to the prominent immunoregulatory activities of ANXs during most parasitic infections and the expression levels of these proteins in some parasitic infected tissues, such multifunctional proteins might be also potentially relevant as vaccine and diagnostic biomarkers. We also suggest some prospects and insights that could be useful and applicable to form the basis of future experimental studies.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran; Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- University of Navarra, ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology. IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| |
Collapse
|
5
|
Annexin in Taenia crassiceps ORF Strain is Localized in the Osmoregulatory System. Acta Parasitol 2022; 67:827-834. [PMID: 35113341 DOI: 10.1007/s11686-022-00526-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE Annexins are proteins with important roles in parasites, some of which are related to excretion-secretion processes, protein traffic, and microvesicle functionality. The participation of annexins in osmoregulation has been reported in tapeworms, including Taenia solium. This study aimed to investigate the localization and expression of annexin in cysticerci of Taenia crassiceps, used as a model of cysticercosis. METHODS We used an antibody made with a protein, previously employed on Schistosoma bovis, to detect annexin in T. crassiceps proteins extracts used Western blot assay. The histological distribution of annexin was studied with immunofluorescence and confocal microscopy. RESULTS The antibody against annexin recognized a band at a molecular weight of 40.9 kDa. The histological distribution of annexin showed that the protein is mainly localized in the tegument and the protonephridia ducts. CONCLUSION In our study, annexin was detected at a molecular weight similar to that described for Schistosoma bovis. In addition, its principal localization entailed structures of the osmoregulatory system one of the most important by the survival of the parasites. This confirms and solidifies previous reports concerning the role of annexins in T. crassiceps and this will be interesting by the development of new compounds against this protein.
Collapse
|
6
|
Song H, He X, Du X, Hua R, Xu J, He R, Xie Y, Gu X, Peng X, Yang G. Molecular characterization and expression analysis of annexin B3 and B38 as secretory proteins in Echinococcus granulosus. Parasit Vectors 2021; 14:103. [PMID: 33557917 PMCID: PMC7869467 DOI: 10.1186/s13071-021-04596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cystic echinococcosis is a parasitic zoonotic disease, which poses a threat to public health and animal husbandry, and causes significant economic losses. Annexins are a family of phospholipid-binding proteins with calcium ion-binding activity, which have many functions. Methods Two annexin protein family genes [Echinococcus granulosus annexin B3 (EgAnxB3) and EgAnxB38] were cloned and molecularly characterized using bioinformatic analysis. The immunoreactivity of recombinant EgAnxB3 (rEgAnxB3) and rEgAnxB38 was investigated using western blotting. The distribution of EgAnxB3 and EgAnxB38 in protoscoleces (PSCs), the germinal layer, 18-day strobilated worms and 45-day adult worms was analyzed by immunofluorescence localization, and their secretory characteristics were analyzed preliminarily; in addition, quantitative real-time reverse transcription polymerase chain reaction was used to analyze their transcript levels in PSCs and 28-day strobilated worms stages. The phospholipid-binding activities of rEgAnxB3 and rEgAnxB38 were also analyzed. Results EgAnxB3 and EgAnxB38 are conserved and contain calcium-binding sites. Both rEgAnxB3 and rEgAnxB38 could be specifically recognized by the serum samples from E. granulosus-infected sheep, indicating that they had strong immunoreactivity. EgAnxB3 and EgAnxB38 were distributed in all stages of E. granulosus, and their transcript levels were high in the 28-day strobilated worms. They were found in liver tissues near the cysts. In addition, rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. Conclusions EgAnxB3 and EgAnxB38 contain calcium-binding sites, and rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. EgAnxB3 and EgAnxB38 were transcribed in PSCs and 28-day strobilated worms. They were expressed in all stages of E. granulosus, and distributed in the liver tissues near the hydatid cyst, indicating that they are secreted proteins that play a crucial role in the development of E. granulosus. ![]()
Collapse
Affiliation(s)
- Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|