1
|
Zhu B, Yang Y, Wang X, Sun D, Yang X, Zhu X, Ding S, Xiao C, Zou Y, Yang X. Blocking H 1R signal aggravates atherosclerosis by promoting inflammation and foam cell formation. J Mol Med (Berl) 2024; 102:887-897. [PMID: 38733386 DOI: 10.1007/s00109-024-02453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory arterial disease, in which abnormal lipid metabolism and foam cell formation play key roles. Histamine is a vital biogenic amine catalyzed by histidine decarboxylase (HDC) from L-histidine. Histamine H1 receptor (H1R) antagonist is a commonly encountered anti-allergic agent in the clinic. However, the role and mechanism of H1R in atherosclerosis have not been fully elucidated. Here, we explored the effect of H1R on atherosclerosis using Apolipoprotein E-knockout (ApoE-/-) mice with astemizole (AST, a long-acting H1R antagonist) treatment. The results showed that AST increased atherosclerotic plaque area and hepatic lipid accumulation in mice. The result of microarray study identified a significant change of endothelial lipase (LIPG) in CD11b+ myeloid cells derived from HDC-knockout (HDC-/-) mice compared to WT mice. Blocking H1R promoted the formation of foam cells from bone marrow-derived macrophages (BMDMs) of mice by up-regulating p38 mitogen-activated protein kinase (p38 MAPK) and LIPG signaling pathway. Taken together, these findings demonstrate that blocking H1R signal aggravates atherosclerosis by promoting abnormal lipid metabolism and macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway. KEY MESSAGES: Blocking H1R signal with AST aggravated atherosclerosis and increased hepatic lipid accumulation in high-fat diet (HFD)-fed ApoE-/- mice. Blocking H1R signal promoted macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway.
Collapse
Affiliation(s)
- Baoling Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong, 266071, China
| | - Yi Yang
- Department of Medical Laboratory, College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xiangfei Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dili Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiyang Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaowei Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University Shanghai, Shanghai, 200940, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chun Xiao
- Department of Cardiology, Third People's Hospital of Huizhou, Guangdong, 516003, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University Shanghai, Shanghai, 200940, China.
- Department of Cardiology, Third People's Hospital of Huizhou, Guangdong, 516003, China.
| |
Collapse
|
2
|
Nikfar A, Rasouli M. Hypolipemic effects of histamine is due to inhibition of VLDL secretion from the liver: involvement of both H1 and H2-receptors. Arch Physiol Biochem 2022; 128:1566-1570. [PMID: 32579487 DOI: 10.1080/13813455.2020.1782436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The research was performed to study the mechanism whereby histamine affects the profile of plasma lipids. Six groups of ten male rats were received two injections with histamine or its H1- and H2-agonists and antagonists. Histamine caused a significant decrease in the concentrations of triglyceride, total cholesterol, and LDLc, while HDLc had no significant change. The rate of VLDL secretion was 263.6 ± 25.8 mg/h dL in control rats and was inhibited by about 68% in histamine injected rats. These changes have been mimicked by either histamine H1- or H2-agonists. The effects of H1- and H2-agonists were abolished in the presence of cetirizine and famotidine respectively. Histamine causes a significant decrease in serum triglyceride, total, and LDL-cholesterol by both H1 and H2-receptors. The decrease in serum lipids is due to the inhibitory effect of histamine or its agonists on VLDL secretion from the liver.
Collapse
Affiliation(s)
- Atefeh Nikfar
- Faculty of Medicine, Department of Clinical Biochemistry and Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Rasouli
- Faculty of Medicine, Department of Clinical Biochemistry and Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Zhu B, Zhang Z, Wang X, Zhang W, Shi H, Song Z, Ding S, Yang X. Abnormal histidine metabolism promotes macrophage lipid accumulation under Ox-LDL condition. Biochem Biophys Res Commun 2022; 588:161-167. [PMID: 34954523 DOI: 10.1016/j.bbrc.2021.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/02/2022]
Abstract
Distinct macrophage populations exert highly heterogeneity and perform various functions, among which, a crucial function of lipid metabolism is highlighted. However, the role of histidine metabolism disorder in macrophage lipid metabolism remains elusive. Addressed this question, we sorted and cultured the bone marrow-derived macrophages (BMDMs) of histidine decarboxylase (Hdc) knockout (Hdc-/-) mice with an in vitro oxidized low-density lipoprotein (ox-LDL) model, and detected the intracellular lipids by Oil Red O staining as well as lipid probe staining. Astemizole, a canonical and long-acting histamine H1 receptor (H1R) antagonist, was applied to elucidate the impact of antagonizing the H1R-dependent signaling pathway on macrophage lipid metabolism. Subsequently, the differential expressed genes were screened and analyzed in the bone marrow-derived CD11b+ immature myeloid cells of Hdc-/- and Hdc+/+ mice with a high fat diet by the microarray study. The expression levels of cholesterol metabolism-related genes were examined by qRT-PCR to explore underlying mechanisms. Lastly, we used a high-sensitivity histidine probe to detect the intracellular histidine in the BMDMs after oxidative stress. The results revealed that histidine metabolism disorder and histamine deficiency aggravated lipid accumulation in the ox-LDL-treated BMDMs. The expression level of H1R gene in the BMDMs was down-regulated after ox-LDL stimulation. The disruption of the H1R-dependent signaling pathway by astemizole further exacerbated ox-LDL-induced lipid deposition in the BMDMs partly by up-regulating scavenger receptor class A (SR-A) for lipid intake, down-regulating neutral cholesteryl ester hydrolase (nCEH) for cholesterol esterification and down-regulating ATP-binding cassette transporters A1 (ABCA1) and ABCG1 for reverse cholesterol transport. The intracellular histidine increased under ox-LDL condition, which was further increased by Hdc knockout. Collectively, these results partially reveal the relationship between histidine metabolism and lipid metabolism in the BMDMs and offer a novel strategy for lipid metabolism disorder-associated diseases.
Collapse
Affiliation(s)
- Baoling Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiangfei Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongyu Shi
- Department of Cardiology, Wusong Hospital of Zhongshan Hospital, Fudan University, Shanghai, 200940, China
| | - Zhifeng Song
- Department of Oral Mucosa and Periodontitis, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200433, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Cardiology, Wusong Hospital of Zhongshan Hospital, Fudan University, Shanghai, 200940, China.
| |
Collapse
|
5
|
|
6
|
Kucher AN. Association of Polymorphic Variants of Key Histamine Metabolism Genes and Histamine Receptor Genes with Multifactorial Diseases. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541907010x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Zhou Y, Gao C, Wang H, Liu L, Huang Z, Fa X. Histamine H1 type receptor antagonist loratadine ameliorates oxidized LDL induced endothelial dysfunction. Biomed Pharmacother 2018; 106:1448-1453. [DOI: 10.1016/j.biopha.2018.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
|
8
|
Haas MJ, Jurado-Flores M, Hammoud R, Plazarte G, Onstead-Haas L, Wong NC, Mooradian AD. Regulation of apolipoprotein A-I gene expression by the histamine H1 receptor: Requirement for NF-κB. Life Sci 2018; 208:102-110. [DOI: 10.1016/j.lfs.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023]
|
9
|
Kimura S, Noguchi H, Nanbu U, Wang KY, Sasaguri Y, Nakayama T. Relationship between CCL22 Expression by Vascular Smooth Muscle Cells and Macrophage Histamine Receptors in Atherosclerosis. J Atheroscler Thromb 2018; 25:1240-1254. [PMID: 29794410 PMCID: PMC6249366 DOI: 10.5551/jat.44297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM CCL22, mainly synthesized by monocyte-derived alternative (M2) macrophages, belongs to the CC family of chemokines and is involved in monocyte migration and recruitment. We have previously investigated CCL22 and histamine in atherosclerosis. Here, we investigated the hypothesis that CCL22 is involved in atherosclerosis, which is influenced by the differentiation of macrophage phenotypes via histamine. METHODS CCL22 expression was investigated in human carotid arteries and coronary arteries with bare metal stents. Ligated carotid arteries of wild-type (C57BL/6J) and apolipoprotein E-deficient mice were also used as atherosclerotic models. The localization and expression of CCL22 and classical (M1)-like and M2-like macrophages in various human and mouse atherosclerotic lesions were investigated by immunohistochemical examination and quantitative real-time polymerase chain reaction. Histamine is expressed in atherosclerosis, and it induces inflammation and immunity. Human- and mice-derived monocytes and macrophages were used to examine the role of histamine in macrophage differentiation and CCL22-expression. Macrophages derived from histamine receptor 1 (H1R)- and 2 (H2R)-knockout (KO) mice were also examined. RESULTS Atherosclerotic lesions showed a distribution of heterogeneous macrophage phenotypes with M1-like and M2-like macrophage dominant sites. CCL22 was distributed in sparse areas of vascular smooth muscle cells (VSMCs) and associated with M2-like macrophages. Moreover, H2R stimulation was associated with CCL22 expression via M2-like macrophage dominant differentiation. CONCLUSION The expression of M1- or M2-like macrophages in atherosclerosis were observed to be dependent on the distribution of VSMCs owing to differences in causal stimuli and the switching of histamine receptors via Th1 or Th2 cytokines. These results suggest that CCL22 may control atherosclerosis.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health
| | - Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health
| | - Uki Nanbu
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health
| | - Ke-Yong Wang
- Shared-Use Research Center, University of Occupational and Environmental Health
| | - Yasuyuki Sasaguri
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health
| |
Collapse
|
10
|
Haas MJ, Plazarte M, Chamseddin A, Onstead-Haas L, Wong NCW, Plazarte G, Mooradian AD. Inhibition of hepatic apolipoprotein A-I gene expression by histamine. Eur J Pharmacol 2018; 823:49-57. [PMID: 29378195 DOI: 10.1016/j.ejphar.2018.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 01/12/2023]
Abstract
In a recent high throughput analysis to identify drugs that alter hepatic apolipoprotein A-I (apo A-I) expression, histamine receptor one (H1) antagonists emerged as potential apo A-1 inducing drugs. Thus the present study was undertaken to identify some of the underlying molecular mechanisms of the effect of antihistaminic drugs on apo AI production. Apo A-I levels were measured by enzyme immunoassay and Western blots. Apo A-I mRNA levels were measured by reverse transcription real-time PCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA as the internal control. The effects of histamine and antihistamines on apo A-I gene were determined by transient transfection of plasmids containing the apo A-I gene promoter. Histamine repressed while (H1) receptor antagonist azelastine increased apo A-I protein and mRNA levels within 48 h in a dose-dependent manner. Azelastine and histamine increased and suppressed, respectively, apo A-I gene promoter activity through a peroxisome proliferator activated receptor α response element. Treatment of HepG2 cells with other H1 receptor antagonists including fexofenadine, cetirizine, and diphenhydramine increased apo A-I levels in a dose-dependent manner while treatment with H2 receptor antagonists including cimetidine, famotidine, and ranitidine had no effect. We conclude that H1 receptor signaling is a novel pathway of apo A1 gene expression and therefore could be an important therapeutic target for enhancing de-novo apo A-1 synthesis.
Collapse
Affiliation(s)
- Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States.
| | - Monica Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Ayham Chamseddin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Luisa Onstead-Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Norman C W Wong
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Gabriela Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| |
Collapse
|
11
|
Yamada S, Guo X. Peroxiredoxin 4 (PRDX4): Its critical in vivo
roles in animal models of metabolic syndrome ranging from atherosclerosis to nonalcoholic fatty liver disease. Pathol Int 2018; 68:91-101. [PMID: 29341349 DOI: 10.1111/pin.12634] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology and Laboratory Medicine; Kanazawa Medical University; Ishikawa Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine; Kanazawa Medical University; Ishikawa Japan
- Laboratory of Pathology; Hebei Cancer Institute; The Fourth Hospital of Hebei Medical University; Hebei China
| |
Collapse
|
12
|
Siafis S, Tzachanis D, Samara M, Papazisis G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr Neuropharmacol 2018; 16:1210-1223. [PMID: 28676017 PMCID: PMC6187748 DOI: 10.2174/1570159x15666170630163616] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic side effects are major concerns in psychopharmacology and clinical psychiatry. Their pathogenetic mechanisms are still not elucidated. METHODS Herein, we review the impact of neurotransmitters on metabolic regulation, providing insights into antipsychotic-induced metabolic side effects. RESULTS Antipsychotic drugs seem to interfere with feeding behaviors and energy balance, processes that control metabolic regulation. Reward and energy balance centers in central nervous system constitute the central level of metabolic regulation. The peripheral level consists of skeletal muscles, the liver, the pancreas, the adipose tissue and neuroendocrine connections. Neurotransmitter receptors have crucial roles in metabolic regulation and they are also targets of antipsychotic drugs. Interaction of antipsychotics with neurotransmitters could have both protective and harmful effects on metabolism. CONCLUSION Emerging evidence suggests that antipsychotics have different liabilities to induce obesity, diabetes and dyslipidemia. However this diversity cannot be explained merely by drugs'pharmacodynamic profiles, highlighting the need for further research.
Collapse
Affiliation(s)
| | | | | | - Georgios Papazisis
- Address correspondence to this author at the Department of Clinical
Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Tel/Fax: +30 2310 999323; E-mail:
| |
Collapse
|
13
|
Haas MJ, Onstead-Haas L, Kurban W, Shah H, Plazarte M, Chamseddin A, Mooradian AD. High-Throughput Analysis Identifying Drugs That Regulate Apolipoprotein A-I Synthesis. Assay Drug Dev Technol 2017; 15:362-371. [DOI: 10.1089/adt.2017.782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael J. Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Luisa Onstead-Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - William Kurban
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Harshit Shah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Monica Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Ayham Chamseddin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Arshag D. Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| |
Collapse
|
14
|
Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: A systematic review. Atherosclerosis 2017; 263:325-333. [PMID: 28577936 DOI: 10.1016/j.atherosclerosis.2017.05.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 05/17/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The aim of this study was to perform a systematic review of the association between DNA methylation and coronary heart disease (CHD) or related atherosclerotic traits. METHODS A systematic review was designed. The condition of interest was DNA methylation, and the outcome was CHD or other atherosclerosis-related traits. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). A functional analysis was undertaken using the Ingenuity Pathway Analysis software. RESULTS In total, 51 articles were included in the analysis: 12 global methylation, 34 candidate-gene and 11 EWAS, with six studies using more than one approach. The results of the global methylation studies were inconsistent. The candidate-gene results were consistent for some genes, suggesting that hypermethylation in ESRα, ABCG1 and FOXP3 and hypomethylation in IL-6 were associated with CHD. The EWAS identified 84 genes showing differential methylation associated with CHD in more than one study. The probability of these findings was <1.37·10-5. One third of these genes have been related to obesity in genome-wide association studies. The functional analysis identified several diseases and functions related to these set of genes: inflammatory, metabolic and cardiovascular disease. CONCLUSIONS Global DNA methylation seems to be not associated with CHD. The evidence from candidate-gene studies was limited. The EWAS identified a set of 84 genes highlighting the relevance of obesity, inflammation, lipid and carbohydrate metabolism in CHD. This set of genes could be prioritized in future studies assessing the role of DNA methylation in CHD.
Collapse
Affiliation(s)
- Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - Irene R Degano
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Yamada S, Tanimoto A, Sasaguri Y. Critical in vivo roles of histamine and histamine receptor signaling in animal models of metabolic syndrome. Pathol Int 2016; 66:661-671. [PMID: 27860077 DOI: 10.1111/pin.12477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022]
Abstract
Histamine, a classic low-molecular-weight amine, is synthesized from L-histidine by histidine decarboxylase (HDC), and histamine-specific receptors (HRs) are essential for its actions. Our serial in vivo studies have uniquely reported that expression of histamine/HRs is variably identified in atherosclerotic lesions, and that HDC-gene knockout mice without histamine/HRs signaling show a marked reduction of atherosclerotic progression. These data have convinced us that histamine plays a pivotal role in the pathogenesis of atherosclerosis. Among four subclasses of HRs, the expression profile of the main receptors (H1/2R) has been shown to be switched from H2R to H1R during monocyte to macrophage differentiation, and H1R is also predominant in smooth muscle and endothelial cells of atheromatous plaque. Using various animal models of H1/2R-gene knockout mice, H1R and H2R were found to reciprocally but critically regulate not only hypercholesterolemia-induced atherosclerosis and injury-induced arteriosclerosis, but also hyperlipidemia-induced nonalcoholic fatty liver disease (NAFLD). Metabolic syndrome manifests obesity, dyslipidemia, insulin resistance, atherosclerosis, and/or NAFLD, i.e. the dysregulation of lipid/bile acid/glucose metabolism. Therefore, although its etiology is complicated and multifactorial, histamine/HRs signaling has a close relationship with the development of metabolic syndrome. We herein review diverse, key in vivo roles of histamine/HR signaling in the pathogenesis of metabolic syndrome.
Collapse
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | |
Collapse
|
16
|
Zheng W, Wang X, Chen Q, Fang K, Wang L, Chen F, Li X, Li Z, Wang J, Liu Y, Yang D, Song X. Low extracellular lysyl oxidase expression is associated with poor prognosis in patients with prostate cancer. Oncol Lett 2016; 12:3161-3166. [PMID: 27899976 PMCID: PMC5103911 DOI: 10.3892/ol.2016.5118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/22/2016] [Indexed: 01/07/2023] Open
Abstract
Remodeling of the extracellular matrix (ECM), which is induced by lysyl oxidase (LOX), has been demonstrated to accompany tumor progression; however, the association between LOX expression levels and the malignant behavior of prostate cancer (Pca) remains unclear. The present study aimed to analyze the tumor-associated expression profile of LOX in patients with Pca and to evaluate its potential prognostic value. In the form of a retrospective study, the expression patterns of LOX and collagen I were analyzed in patients with benign prostate hyperplasia and Pca by immunohistochemical examination. The results demonstrated that, with the initiation and progression of Pca, the expression levels of LOX and collagen I were closely associated with Gleason score and tumor stage. In addition, although LOX was expressed in cancer and non-cancer tissues, the differential expression pattern observed in the ECM of Pca cells may indicate that LOX is an important molecule that affects the progression of this disease. Therefore, LOX expression level in the ECM may function as an independent predictor of Pca.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xuejian Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Kun Fang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Feng Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiancheng Li
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ziyao Li
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jianbo Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yingxi Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China; Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Xishuang Song
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
17
|
Scavenger receptor class-A plays diverse role in innate immunity, cell signaling and different pathologies. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Yamada S, Guo X, Wang K, Tanimoto A, Sasaguri Y. Novel function of histamine signaling via histamine receptors in cholesterol and bile acid metabolism: Histamine H2 receptor protects against nonalcoholic fatty liver disease. Pathol Int 2016; 66:376-85. [PMID: 27321390 DOI: 10.1111/pin.12423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/11/2016] [Accepted: 05/18/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Department of Pathology and Cell Biology School of Medicine, University of Occupational and Environmental Health Kitakyushu Japan
| | - Xin Guo
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Department of Pathology and Cell Biology School of Medicine, University of Occupational and Environmental Health Kitakyushu Japan
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University Shijiazhuang China
| | - Ke‐Yong Wang
- Department of Pathology and Cell Biology School of Medicine, University of Occupational and Environmental Health Kitakyushu Japan
- Shared‐Use Research Center School of Medicine, University of Occupational and Environmental Health Kitakyushu Japan
| | - Akihide Tanimoto
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | | |
Collapse
|
19
|
Kitakaze M. Clinical Evidence of the Role of Histamine in Heart Failure ∗. J Am Coll Cardiol 2016; 67:1553-1555. [DOI: 10.1016/j.jacc.2016.01.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/14/2016] [Accepted: 01/26/2016] [Indexed: 11/30/2022]
|