1
|
Yavas A, Ozcan K, Adsay NV, Balci S, Tarcan ZC, Hechtman JF, Luchini C, Scarpa A, Lawlor RT, Mafficini A, Reid MD, Xue Y, Yang Z, Haye K, Bellizzi AM, Vanoli A, Benhamida J, Balachandran V, Jarnagin W, Park W, O'Reilly EM, Klimstra DS, Basturk O. SWI/SNF Complex-Deficient Undifferentiated Carcinoma of the Pancreas: Clinicopathologic and Genomic Analysis. Mod Pathol 2024; 37:100585. [PMID: 39094734 PMCID: PMC11585460 DOI: 10.1016/j.modpat.2024.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Inactivating alterations in the SWItch/Sucrose NonFermentable (SWI/SNF) Chromatin Remodeling Complex subunits have been described in multiple tumor types. Recent studies focused on SMARC subunits of this complex to understand their relationship with tumor characteristics and therapeutic opportunities. To date, pancreatic cancer with these alterations has not been well studied, although isolated cases of undifferentiated carcinomas have been reported. Herein, we screened 59 pancreatic undifferentiated carcinomas for alterations in SWI/SNF complex-related (SMARCB1 [BAF47/INI1], SMARCA4 [BRG1], SMARCA2 [BRM]) proteins and/or genes using immunohistochemistry and/or next-generation sequencing. Cases with alterations in SWI/SNF complex-related proteins/genes were compared with cases without alterations, as well as with 96 conventional pancreatic ductal adenocarcinomas (PDAC). In all tumor groups, mismatch repair and PD-L1 protein expression were also evaluated. Thirty of 59 (51%) undifferentiated carcinomas had a loss of SWI/SNF complex-related protein expression or gene alteration. Twenty-seven of 30 (90%) SWI-/SNF-deficient undifferentiated carcinomas had rhabdoid morphology (vs 9/29 [31%] SWI-/SNF-retained undifferentiated carcinomas; P < .001) and all expressed cytokeratin, at least focally. Immunohistochemically, SMARCB1 protein expression was absent in 16/30 (53%) cases, SMARCA2 in 4/30 (13%), and SMARCA4 in 4/30 (13%); both SMARCB1 and SMARCA2 protein expressions were absent in 1/30 (3%). Five of 8 (62.5%) SWI-/SNF-deficient undifferentiated carcinomas that displayed loss of SMARCB1 protein expression by immunohistochemistry were found to have corresponding SMARCB1 deletions by next-generation sequencing. Analysis of canonical driver mutations for PDAC in these cases showed KRAS (2/5) and TP53 (2/5) abnormalities. Median combined positive score for PD-L1 (E1L3N) was significantly higher in the undifferentiated carcinomas with/without SWI/SNF deficiency compared with the conventional PDACs (P < .001). SWI-/SNF-deficient undifferentiated carcinomas were larger (P < .001) and occurred in younger patients (P < .001). Patients with SWI-/SNF-deficient undifferentiated carcinoma had worse overall survival compared with patients with SWI-/SNF-retained undifferentiated carcinoma (P = .004) and PDAC (P < .001). Our findings demonstrate that SWI-/SNF-deficient pancreatic undifferentiated carcinomas are frequently characterized by rhabdoid morphology, exhibit highly aggressive behavior, and have a negative prognostic impact. The ones with SMARCB1 deletions appear to be frequently KRAS wild type. Innovative developmental therapeutic strategies targeting this genomic basis of the SWI/SNF complex and the therapeutic implications of EZH2 inhibition (NCT03213665), SMARCA2 degrader (NCT05639751), or immunotherapy are currently under investigation.
Collapse
Affiliation(s)
- Aslihan Yavas
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Now with Institute of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Kerem Ozcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, Michigan
| | - N Volkan Adsay
- The Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Serdar Balci
- Department of Pathology, Memorial Healthcare Group, Istanbul, Turkey
| | - Zeynep C Tarcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
| | - Jaclyn F Hechtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Caris Life Sciences, Miami, Florida
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Michelle D Reid
- Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia
| | - Yue Xue
- Department of Pathology, University Hospitals, Cleveland, Ohio
| | - Zhaohai Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kester Haye
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa, Iowa City, Iowa; Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod Balachandran
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Jarnagin
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wungki Park
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Paige.AI, New York, New York
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York.
| |
Collapse
|
2
|
Mugaanyi J, Lu C, Huang J, Lu C. Undifferentiated Pancreatic Carcinomas, Clinical Features and Therapeutic Options: What We Know. Cancers (Basel) 2022; 14:cancers14246102. [PMID: 36551588 PMCID: PMC9776693 DOI: 10.3390/cancers14246102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Undifferentiated pancreatic carcinomas are rare malignant tumors of the pancreas that are very aggressive and challenging to diagnose. The WHO categorizes them into undifferentiated osteoclast-like giant cell, sarcomatoid, and rhabdoid pancreatic carcinomas. Patients present with nonspecific symptoms such as jaundice, vague abdominal or back pain and itchy skin. Their histological characteristics include positive pan-cytokeratin mononuclear pleomorphic cells, osteoclast-like giant cells and CD68. Patients may have KRAS, TP53 and SMAD4 alterations, homozygous deletions of CDKN2A and CDKN2B, as well as INI1 deficiency. Surgical resection is the only curative treatment. Patients may benefit from postoperative adjuvant therapy. There are no widely accepted guidelines specific to this type of tumor; however, some chemotherapy regimens may be promising. The patient prognosis is mostly poor, especially in patients with unresectable tumors. However, several studies have shown patients achieving long-term survival with adjuvant therapy. In conclusion, although undifferentiated pancreatic carcinoma is rare and very aggressive, there is still potential for improved patient survival with proper diagnosis and treatment.
Collapse
Affiliation(s)
- Joseph Mugaanyi
- School of Medicine, Ningbo University, Ningbo 315211, China
- Department of Hepato-Pancreato-Billiary Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo 315211, China
| | - Changjiang Lu
- Department of Hepato-Pancreato-Billiary Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo 315211, China
| | - Jing Huang
- Department of Hepato-Pancreato-Billiary Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo 315211, China
| | - Caide Lu
- Department of Hepato-Pancreato-Billiary Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
3
|
Yin X, Xu R, Song J, Ruze R, Chen Y, Wang C, Xu Q. Lipid metabolism in pancreatic cancer: emerging roles and potential targets. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1234-1256. [PMID: 36107801 PMCID: PMC9759769 DOI: 10.1002/cac2.12360] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/05/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
Pancreatic cancer is one of the most serious health issues in developed and developing countries, with a 5-year overall survival rate currently <9%. Patients typically present with advanced disease due to vague symptoms or lack of screening for early cancer detection. Surgical resection represents the only chance for cure, but treatment options are limited for advanced diseases, such as distant metastatic or locally progressive tumors. Although adjuvant chemotherapy has improved long-term outcomes in advanced cancer patients, its response rate is low. So, exploring other new treatments is urgent. In recent years, increasing evidence has shown that lipid metabolism can support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage, and catabolism. Therefore, a better understanding of lipid metabolism networks may provide novel and promising strategies for early diagnosis, prognosis estimation, and targeted therapy for pancreatic cancer patients. In this review, we first enumerate and discuss current knowledge about the advances made in understanding the regulation of lipid metabolism in pancreatic cancer. In addition, we summarize preclinical studies and clinical trials with drugs targeting lipid metabolic systems in pancreatic cancer. Finally, we highlight the challenges and opportunities for targeting lipid metabolism pathways through precision therapies in pancreatic cancer.
Collapse
Affiliation(s)
- Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| |
Collapse
|
4
|
Tsai FJ, Lai MT, Cheng J, Chao SCC, Korla PK, Chen HJ, Lin CM, Tsai MH, Hua CH, Jan CI, Jinawath N, Wu CC, Chen CM, Kuo BYT, Chen LW, Yang J, Hwang T, Sheu JJC. Novel K6-K14 keratin fusion enhances cancer stemness and aggressiveness in oral squamous cell carcinoma. Oncogene 2019; 38:5113-5126. [PMID: 30867567 DOI: 10.1038/s41388-019-0781-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Keratin intermediate filament (IF) is one component of cellular architectures, which provides necessary mechanical support to conquer environmental stresses. Recent findings reveal its involvement in mechano-transduction and the associated stem cell reprogramming, suggesting the possible roles in cancer development. Here, we report t(12;17)(q13.13;q21.2) chromosomal rearrangement as the most common fusion event in OSCC, resulting in a variety of inter-keratin fusions. Junction site mapping verified 9 in-frame K6-K14 variants, three of which were correlated with lymph node invasion, late tumor stages (T3/T4) and shorter disease-free survival times. When expressed in OSCC cells, those fusion variants disturbed wild-type K14 organization through direct interaction or aggregate formation, leading to perinuclear structure loss and nuclear deformation. Protein array analyses showed the ability of K6-K14 variant 7 (K6-K14/V7) to upregulate TGF-β and G-CSF signaling, which contributed to cell stemness, drug tolerance, and cell aggressiveness. Notably, K6-K14/V7-expressing cells easily adapted to a soft 3-D culture condition in vitro and formed larger, less differentiated tumors in vivo. In addition to the anti-mechanical-stress activity, our data uncover oncogenic functionality of novel keratin filaments caused by gene fusions during OSCC development.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung, 40343, Taiwan
| | - Jack Cheng
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Stev Chun-Chin Chao
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Praveen Kumar Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Hui-Jye Chen
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chung-Ming Lin
- Department of Biotechnology, Ming Chuan University, Taoyuan, 33348, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chia-Ing Jan
- Department of Pathology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Natini Jinawath
- Program in Translation Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chia-Chen Wu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Li-Wen Chen
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Jacky Yang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|