1
|
Gao J, Zhang Z, Yu J, Zhang N, Fu Y, Jiang X, Xia Z, Zhang Q, Wen Z. Identification of Neutrophil Extracellular Trap-Related Gene Expression Signatures in Ischemia Reperfusion Injury During Lung Transplantation: A Transcriptome Analysis and Clinical Validation. J Inflamm Res 2024; 17:981-1001. [PMID: 38370470 PMCID: PMC10871139 DOI: 10.2147/jir.s444774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose Ischemia reperfusion injury (IRI) unavoidably occurs during lung transplantation, further contributing to primary graft dysfunction (PGD). Neutrophils are the end effectors of IRI and activated neutrophils release neutrophil extracellular traps (NETs) to further amplify damage. Nevertheless, potential contributions of NETs in IRI remain incompletely understood. This study aimed to explore NET-related gene biomarkers in IRI during lung transplantation. Methods Differential expression analysis was applied to identify differentially expressed genes (DEGs) for IRI during lung transplantation based on matrix data (GSE145989, 127003) downloaded from GEO database. The CIBERSORT and weighted gene co-expression network analysis (WGCNA) algorithms were utilized to identify key modules associated with neutrophil infiltration. Moreover, the least absolute shrinkage and selection operator regression and random forest were applied to identify potential NET-associated hub genes. Subsequently, the screened hub genes underwent further validation of an external dataset (GSE18995) and nomogram model. Based on clinical peripheral blood samples, immunofluorescence staining and dsDNA quantification were used to assess NET formation, and ELISA was applied to validate the expression of hub genes. Results Thirty-eight genes resulted from the intersection between 586 DEGs and 75 brown module genes, primarily enriched in leukocyte migration and NETs formation. Subsequently, four candidate hub genes (FCAR, MMP9, PADI4, and S100A12) were screened out via machine learning algorithms. Validation using an external dataset and nomogram model achieved better predictive value. Substantial NETs formation was demonstrated in IRI, with more pronounced NETs observed in patients with PGD ≥ 2. PADI4, S100A12, and MMP9 were all confirmed to be up-regulated after reperfusion through ELISA, with higher levels of S100A12 in PGD ≥ 2 patients compared with non-PGD patients. Conclusion We identified three potential NET-related biomarkers for IRI that provide new insights into early detection and potential therapeutic targets of IRI and PGD after lung transplantation.
Collapse
Affiliation(s)
- Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, People’s Republic of China
| | - Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, People’s Republic of China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, People’s Republic of China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, People’s Republic of China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, People’s Republic of China
| | - Zheyu Xia
- School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qingqing Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, People’s Republic of China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Kim JH, Kim TY, Goo B, Park Y. Bee Venom Stimulates Growth Factor Release from Adipose-Derived Stem Cells to Promote Hair Growth. Toxins (Basel) 2024; 16:84. [PMID: 38393162 PMCID: PMC10892121 DOI: 10.3390/toxins16020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Limited evidence suggests that stimulating adipose-derived stem cells (ASCs) indirectly promotes hair growth. We examined whether bee venom (BV) activated ASCs and whether BV-induced hair growth was facilitated by enhanced growth factor release by ASCs. The induction of the telogen-to-anagen phase was studied in mice. The underlying mechanism was investigated using organ cultures of mouse vibrissa hair follicles. When BV-treated ASCs were injected subcutaneously into mice, the telogen-to-anagen transition was accelerated and, by day 14, the hair weight increased. Quantitative polymerase chain reaction (qPCR) revealed that BV influenced the expression of several molecules, including growth factors, chemokines, channels, transcription factors, and enzymes. Western blot analysis was employed to verify the protein expression levels of extracellular-signal-regulated kinase (ERK) and phospho-ERK. Both the Boyden chamber experiment and scratch assay confirmed the upregulation of cell migration by BV. Additionally, ASCs secreted higher levels of growth factors after exposure to BV. Following BV therapy, the gene expression levels of alkaline phosphatase (ALP), fibroblast growth factor (FGF)-1 and 6, endothelial cell growth factor, and platelet-derived growth factor (PDGF)-C were upregulated. The findings of this study suggest that bee venom can potentially be utilized as an ASC-preconditioning agent for hair regeneration.
Collapse
Affiliation(s)
- Jung Hyun Kim
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Tae Yoon Kim
- Department of Traditional Korean Medicine Practice, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| | - Bonhyuk Goo
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Yeoncheol Park
- Department of Acupuncture & Moxibustion Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, 26, Kyungheedae-ro 4-gil, Dongdaemun-gu, Seoul 02453, Republic of Korea
| |
Collapse
|
3
|
Yang T, Liu X, Zhou Y, Du L, Fu Y, Luo Y, Zhang W, Feng Z, Ge J, Mei Z. Sanpian decoction ameliorates cerebral ischemia-reperfusion injury by regulating SIRT1/ERK/HIF-1α pathway through in silico analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116898. [PMID: 37467820 DOI: 10.1016/j.jep.2023.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process involving multiple factors, and becomes the footstone of rehabilitation after ischemic stroke. Sanpian decoction (SPD) has exhibited protective effects against CIRI, migraine, and other cerebral vascular diseases. However, the underlying mechanisms have not been completely elucidated. AIM OF THE STUDY This study sought to explore the potential mechanisms underlying the effect of SPD against CIRI. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography (UPLC) were carried out to determine the chemical constituents of SPD. A network pharmacology approach combined with experimental verification was conducted to elucidate SPD's multi-component, multi-target, and multi-pathway mechanisms in CIRI occurrence. The pharmacodynamics of the decoction was evaluated by establishing the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). In vivo and in vitro experiments were carried out, and the therapeutic effects of SPD were performed using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and Nissl staining. We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and flow cytometry to evaluate cortex apoptosis. The quantification of mRNA and corresponding proteins were performed using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot respectively. RESULTS Our research showed that pretreatment with SPD improved neurological function and inhibited CIRI. Network pharmacology revealed that the hypoxia-inducible factor-1 (HIF-1) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway-mediated apoptosis may be associated with CIRI. In vivo and in vitro experiments, we confirmed that SPD increased cerebral blood flow, improved neural function, and reduced neural apoptosis via up-regulating the expression of sirtuin 1 (SIRT1) and down-regulating phospho-extracellular regulated protein kinases (p-ERK)/ERK and HIF-1α levels in CIRI rats. CONCLUSION Taken together, the present study systematically revealed the potential targets and signaling pathways of SPD in the treatment of CIRI using in silico prediction and verified the therapeutic effects of SPD against CIRI via ameliorating apoptosis by regulating SIRT1/ERK/HIF-1α.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China; State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yang Fu
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, 441000, Hubei, China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
4
|
Ortín-Bustillo A, Botía M, López-Martínez MJ, Martínez-Subiela S, Cerón JJ, González-Bulnes A, Manzanilla EG, Goyena E, Tecles F, Muñoz-Prieto A. Changes in S100A8/A9 and S100A12 and Their Comparison with Other Analytes in the Saliva of Pigs with Diarrhea Due to E. coli. Animals (Basel) 2023; 13:2556. [PMID: 37627347 PMCID: PMC10451909 DOI: 10.3390/ani13162556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
The family of calgranulins includes S100A8 (calgranulin A), S100A9 (calgranulin B), which can appear as a heterodimer known as S100A8/A9 or calprotectin, and S100A12 (calgranulin C). These proteins are related to different inflammatory conditions, immune-mediated diseases, and sepsis and are considered biomarkers of potential interest. This study aims to evaluate if S100A8/A9 and A12 could change in pigs with diarrhea due to E. coli and to compare the changes of S100A8/A9 and A12 with other analytes in order to explore the possible causes or mechanisms involved. For this purpose, a panel integrated by analytes related to inflammation (haptoglobin, inter-alpha trypsin inhibitor 4 (ITIH4), and total protein); immune system (adenosine deaminase, ADA); stress (alpha-amylase); tissue damage (lactate and lactate dehydrogenase (LDH)); sepsis (aldolase) and redox status (ferric-reducing ability of saliva (FRAS) and advanced oxidation protein products (AOPP)) was evaluated. S100A8/A9 and A12 and the other analytes measured in this study showed increases in the saliva of pigs with diarrhea due to E. coli. S100A8/A9 and/or A12 showed a significant correlation of different magnitude with some of the other analytes evaluated. Further studies should be conducted to gain knowledge about the possible practical applications as biomarkers of the measurements of S100A8/A9 and A12 in the saliva of pigs.
Collapse
Affiliation(s)
- Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - María Botía
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain;
- Cuarte S.L. Grupo Jorge, Ctra. De Logroño, Km 9,2., Monzalbarba, 50120 Zaragoza, Spain
| | - Edgar García Manzanilla
- Pig Development Department, The Irish Food and Agriculture Authority, Teagasc, Moorepark, P61 C996 Fermoy, Ireland;
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Elena Goyena
- Department of Animal Health, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain;
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| |
Collapse
|
5
|
Zhou Y, Zha Y, Yang Y, Ma T, Li H, Liang J. S100 proteins in cardiovascular diseases. Mol Med 2023; 29:68. [PMID: 37217870 DOI: 10.1186/s10020-023-00662-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Cardiovascular diseases have become a serious threat to human health and life worldwide and have the highest fatality rate. Therefore, the prevention and treatment of cardiovascular diseases have become a focus for public health experts. The expression of S100 proteins is cell- and tissue-specific; they are implicated in cardiovascular, neurodegenerative, and inflammatory diseases and cancer. This review article discusses the progress in the research on the role of S100 protein family members in cardiovascular diseases. Understanding the mechanisms by which these proteins exert their biological function may provide novel concepts for preventing, treating, and predicting cardiovascular diseases.
Collapse
Affiliation(s)
- Yue Zhou
- Medical College, Yangzhou University, Yangzhou, China
| | - Yiwen Zha
- Medical College, Yangzhou University, Yangzhou, China
| | - Yongqi Yang
- Medical College, Yangzhou University, Yangzhou, China
| | - Tan Ma
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Bai Y, Guo N, Xu Z, Chen Y, Zhang W, Chen Q, Bi Z. S100A1 expression is increased in spinal cord injury and promotes inflammation, oxidative stress and apoptosis of PC12 cells induced by LPS via ERK signaling. Mol Med Rep 2022; 27:30. [PMID: 36524376 PMCID: PMC9827259 DOI: 10.3892/mmr.2022.12917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder and the molecular mechanisms leading to its poor prognosis remain to be elucidated. S100A1, a mediator of Ca2+ handling of sarcoplasmic reticulum and mitochondrial function, operates as an endogenous danger signal (alarmin) associated with inflammatory response and tissue injury. The aim of the present study was to investigate the expression and biological effects of S100A1 in SCI. A rat model of SCI and a PC12 cell model of lipopolysaccharide (LPS)‑induced inflammation were established to examine S100A1 expression at the mRNA and protein levels. The inflammation level, which was mediated by S100A1, was determined based on inflammatory factor (IL‑1β, IL‑6 and TNF‑α) and anti‑inflammatory factor (IL‑10) expression. The effects of S100A1 on cellular oxidation and anti‑oxidation levels were observed by detecting the levels of reactive oxygen species, superoxide dismutase, catalase activities and nuclear factor erythroid 2‑related factor 2 expression. The protein levels of Bax, Bcl2 and cleaved caspase‑3 were used for the evaluation of the effects of S100A1 on apoptosis. Phosphorylated (p‑)ERK1/2 expression was used to evaluate the effects of S100A1 on ERK signaling. The results revealed that S100A1 expression was significantly upregulated in vivo and in vitro in the PC12 cell model of LPS‑inflammation. The silencing and overexpression of S100A1 helped alleviate and aggravate LPS‑induced inflammation, oxidative stress and apoptosis levels, respectively. S100A1 was found to regulate the ERK signaling pathway positively. An inhibitor of ERK signaling (MK‑8353) partially abolished the promoting effects of the overexpression of S100A1 on inflammation, oxidative stress damage and apoptosis. In conclusion, S100A1 expression was elevated in model of SCI and in the PC12 cell model of LPS‑induced inflammation. Furthermore, the overexpression/silencing S100A1 aggravated/mitigated the inflammation, oxidative stress damage and the apoptosis of LPS‑stimulated PC12 cells via the ERK signaling pathway. The present study revealed the mechanism of S100A1 in SCI, which provided a new theoretic reference for future research on SCI.
Collapse
Affiliation(s)
- Ye Bai
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China,Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Ning Guo
- Department of Outpatient, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Zhanwu Xu
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Yuxi Chen
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wenjin Zhang
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Qinghe Chen
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China,Correspondence to: Dr Zhenggang Bi, Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China, E-mail:
| |
Collapse
|
7
|
Wu S, Di S, Liu T, Shi Y. Emerging prediction methods for early diagnosis of necrotizing enterocolitis. Front Med (Lausanne) 2022; 9:985219. [PMID: 36186788 PMCID: PMC9523100 DOI: 10.3389/fmed.2022.985219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening disease of the digestive system that occurs in the neonatal period. NEC is difficult to diagnose early and the prognosis is poor. Previous studies have reported that abnormalities can be detected before the presentation of clinical symptoms. Based on an analysis of literature related to the early prediction of NEC, we provide a detailed review on the early prediction and diagnosis methods of NEC, including ultrasound, near-infrared spectroscopy, biomarkers, and intestinal microbiota. This review aimed to provide a reference for further research and clinical practice.
Collapse
|
8
|
Xie J, Luo C, Mo B, Lin Y, Liu G, Wang X, Li L. Inflammation and Oxidative Stress Role of S100A12 as a Potential Diagnostic and Therapeutic Biomarker in Acute Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2633123. [PMID: 36062187 PMCID: PMC9436632 DOI: 10.1155/2022/2633123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022]
Abstract
Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases with high morbidity and mortality. Numerous studies have indicated that S100A12 may has an essential role in the occurrence and development of AMI, and in-depth studies are currently lacking. The purpose of this study is to investigate the effect of S100A12 on inflammation and oxidative stress and to determine its clinical applicability in AMI. Here, AMI datasets used to explore the expression pattern of S100A12 in AMI were derived from the Gene Expression Omnibus (GEO) database. The pooled standard average deviation (SMD) was calculated to further determine S100A12 expression. The overlapping differentially expressed genes (DEGs) contained in all included datasets were recognized by the GEO2R tool. Then, functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were carried out to determine the molecular function of overlapping DEGs. Gene set enrichment analysis (GSEA) was conducted to determine unrevealed mechanisms of S100A12. Summary receiver operating characteristic (SROC) curve analysis and receiver operating characteristic (ROC) curve analysis were carried out to identify the diagnostic capabilities of S100A12. Moreover, we screened miRNAs targeting S100A12 using three online databases (miRWalk, TargetScan, and miRDB). In addition, by comprehensively using enzyme-linked immunosorbent assay (ELISA), real-time quantitative PCR (RT-qPCR), Western blotting (WB) methods, etc., we used the AC16 cells to validate the expression and underlying mechanism of S100A12. In our study, five datasets related to AMI, GSE24519, GSE60993, GSE66360, GSE97320, and GSE48060 were included; 412 overlapping DEGs were identified. Protein-protein interaction (PPI) network and functional analyses showed that S100A12 was a pivotal gene related to inflammation and oxidative stress. Then, S100A12 overexpression was identified based on the included datasets. The pooled standard average deviation (SMD) also showed that S100A12 was upregulated in AMI (SMD = 1.36, 95% CI: 0.70-2.03, p = 0.024). The SROC curve analysis result suggested that S100A12 had remarkable diagnostic ability in AMI (AUC = 0.90, 95% CI: 0.87-0.92). And nine miRNAs targeting S100A12 were also identified. Additionally, the overexpression of S100A12 was further confirmed that it maybe promote inflammation and oxidative stress in AMI through comprehensive in vitro experiments. In summary, our study suggests that overexpressed S100A12 may be a latent diagnostic biomarker and therapeutic target of AMI that induces excessive inflammation and oxidative stress. Nine miRNAs targeting S100A12 may play a crucial role in AMI, but further studies are still needed. Our work provides a positive inspiration for the in-depth study of S100A12 in AMI.
Collapse
Affiliation(s)
- Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China
| | - Changjun Luo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China
| | - Binhai Mo
- Department of Cardiology, The First People Hospital of Nanning & The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530016 Guangxi, China
| | - Yunhua Lin
- The First Clinical Medical College, Guangxi Medical University, Nanning 530021, China
| | - Guoqing Liu
- The First Clinical Medical College, Guangxi Medical University, Nanning 530021, China
| | - Xiantao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021 Guangxi, China
| |
Collapse
|
9
|
Chen L, Chen X, Wang Y, Li S, Huang S, Wu Z, He J, Chen S, Deng F, Zhu P, Zhong W, Zhao B, Ma G, Li Y. Polymorphisms of Calgranulin Genes and Ischemic Stroke in a Chinese Population. J Inflamm Res 2022; 15:3355-3368. [PMID: 35706528 PMCID: PMC9191198 DOI: 10.2147/jir.s360775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background The S100/calgranulin gene appears to modulate neuroinflammation following cerebral ischemia and could be a valuable biomarker for stroke prognosis, according to growing research. This study aimed at evaluating the correlation between calgranulin gene variants and susceptibility to ischemic stroke (IS) in the Southern Chinese population. Methods Using an enhanced multi-temperature ligase detection reaction genotyping, 310 IS patients and 324 age-matched healthy controls were genotyped to identify five calgranulin gene variants. Results According to the obtained results, the S100A8 rs3795391, rs3806232, and S100A12 rs2916191 variants were linked to a higher risk of IS, while the S100A9 rs3014866 variant was associated with a lower risk of IS. Moreover, the T-T-C-A-T, T-T-C-G-T, or C-C-C-G-C haplotypes have been linked to a greater risk of developing IS, according to haplotype analysis. The occurrence of the variant C allele there in S100A8 rs3795391, rs3806232, and S100A12 rs2916191 variants may impart a greater risk of stroke in the LAA subtype, according to further stratification by IS subtypes, while the T allele of the S100A9 rs3014866 variant may be linked to a reduced risk of stroke of all subtypes. Furthermore, patients with the variant C allele of the S100A8 rs3795391, rs3806232, and S100A12 rs2916191 variants presented with increased circulating S100A8 and S100A12 levels and larger infarct volumes relative to those with the major TT genotype. Conclusion Our findings suggest that calgranulin gene variants are linked to IS susceptibility, implying that the calgranulin gene may be a potential biomarker for IS prevention and personalized treatment.
Collapse
Affiliation(s)
- Linfa Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Department of Neurology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, People's Republic of China
| | - Xinglan Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde, People's Republic of China
| | - Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Shaoting Huang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Zhaochun Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Jiawen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Shaofeng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Fu Deng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Peiyi Zhu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Wangtao Zhong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde, People's Republic of China
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
10
|
Huang L, Zhao B, Li Q, Wu J, Jiang H, Li Q. Ephedrine alleviates middle cerebral artery occlusion-induced neurological deficits and hippocampal neuronal damage in rats by activating PI3K/AKT signaling pathway. Bioengineered 2021; 12:4136-4149. [PMID: 34288825 PMCID: PMC8806764 DOI: 10.1080/21655979.2021.1953218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 10/31/2022] Open
Abstract
Inflammation and oxidative stress are crucial in ischemic stroke. Ephedrine (EPH) has been proven to have anti-inflammatory and anti-oxidative stress effects. The present study analyzes whether EPH possessed neuroprotective effects and explored the underlying mechanisms of EPH based on an experimental model of middle cerebral artery occlusion (MCAO). We found that intraperitoneal injection with EPH attenuated the neurological deficit, cerebral infarction, and cerebral edema induced by MCAO in rats. Besides, EPH treatment alleviated MCAO-induced brain tissue damage and morphological abnormality, as well as neuronal loss. Moreover, EPH treatment upregulated GPx and CAT activity and downregulated MDA and NO content. EPH also evidently decreased the levels of IL-6 and TNF-α but increased IL-4 and IL-10 levels. Of note, EPH treatment promoted the phosphorylation of PI3K and AKT proteins in MCAO rats. Furthermore, administration of PI3K/AKT pathway inhibitor LY294002 abolished the beneficial effects of EPH. These results confirmed that EPH alleviated brain injury induced by MCAO via activating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lixian Huang
- Encephalopathy, Beijing University of Traditional Chinese Medicine, Dong Zhi Men Hospital, Tongzhou Hospital Area, Beijing, China
| | - Bo Zhao
- Encephalopathy, Beijing University of Traditional Chinese Medicine, Dong Zhi Men Hospital, Tongzhou Hospital Area, Beijing, China
| | - Qunxian Li
- Encephalopathy, Beijing University of Traditional Chinese Medicine, Dong Zhi Men Hospital, Tongzhou Hospital Area, Beijing, China
| | - Jing Wu
- Encephalopathy, Beijing University of Traditional Chinese Medicine, Dong Zhi Men Hospital, Tongzhou Hospital Area, Beijing, China
- ENT Department, Dong Fang Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hui Jiang
- ENT Department, Dong Fang Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qingbin Li
- Encephalopathy, Beijing University of Traditional Chinese Medicine, Dong Zhi Men Hospital, Tongzhou Hospital Area, Beijing, China
| |
Collapse
|
11
|
Zhang C, Yao R, Chen J, Zou Q, Zeng L. S100 family members: potential therapeutic target in patients with hepatocellular carcinoma: A STROBE study. Medicine (Baltimore) 2021; 100:e24135. [PMID: 33546025 PMCID: PMC7837992 DOI: 10.1097/md.0000000000024135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Proteins in S100 family exhibit different expressions patterns and perform different cytological functions, playing substantial roles in certain cancers, carcinogenesis, and disease progression. However, the expression and role of S100 family members in the prognosis of hepatocellular carcinoma (HCC) remains unclear. To investigate the effect of S100 family members for the prognosis of liver cancer, we assessed overall survival (OS) using a Kaplan-Meier plotter (KM plotter) in liver cancer patients with different situation. Our results showed that 15 members of the S100 family exhibited high levels of expression and these levels were correlated with OS in liver cancer patients. The higher expression of S100A5, S100A7, S100A7A, S100A12, S100Z, and S100G was reflected with better survival in liver cancer patients. However, worse prognosis was related to higher levels of expression of S100A2, S100A6, S100A8, S100A9, S100A10, S100A11, S10013, S100A14, and S100P. We then evaluated the prognostic values of S100 family members expression for evaluating different stages of AJCC-T, vascular invasion, alcohol consumption, and the presence of hepatitis virus in liver cancer patients. Lastly, we studied the prognostic values of S100 family members expression for patients after sorafenib treatment. In conclusion, our findings show that the proteins of S100 family members exhibit differential expression and may be useful as targets for liver cancer, facilitating novel diagnostic and therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Geriatrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang
| | - Rucheng Yao
- Department of Hepatopancreatobilary Surgery, The First College of Clinical Medical Sciences, Three Gorges University, Yichang, Hubei
| | - Jie Chen
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, P.R. China
| | - Qiong Zou
- Department of Geriatrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang
| | - Linghai Zeng
- Department of Geriatrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang
| |
Collapse
|
12
|
Qiu SZ, Zheng GR, Ma CY, Chen B, Huang JJ, Huang G, Hua H. High Serum S100A12 Levels Predict Poor Outcome After Acute Primary Intracerebral Hemorrhage. Neuropsychiatr Dis Treat 2021; 17:3245-3253. [PMID: 34754192 PMCID: PMC8572103 DOI: 10.2147/ndt.s337041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) triggers an inflammatory cascade that damages brain tissues and worsens functional outcome. S100A12 functions to promote brain inflammation. We aimed to investigate the relationship between serum S100A12 levels and functional outcome in ICH patients. METHODS Serum S100A12 levels were measured in 101 ICH patients hospitalized within 24 h after symptom onset. Poor functional outcome was defined as a modified Rankin scale of 3 or greater at 3 months after stroke. Early neurologic deterioration was defined as an increase of ≥4 points in the National Institutes of Health Stroke Scale (NIHSS) score or death at 24 hours from symptoms onset. RESULTS High serum S100A12 levels were independently correlated with NIHSS score (t = 5.384, P < 0.001), hematoma volume (t = 4.221, P < 0.001) and serum C-reactive protein levels (t = 5.068, P < 0.001). Serum S100A12 levels were substantially higher in patients with a poor outcome (median, 66.5 versus 37.7 ng/mL; P < 0.001) or early neurological deterioration (median, 76.5 versus 40.1 ng/mL; P < 0.001) than in the other remainders, independently predicted a poor outcome (odds ratio, 1.035; 95% confidence interval, 1.007-1.064; P = 0.015) and early neurologic deterioration (odds ratio,1.032; 95% confidence interval, 1.003-1.060; P = 0.027), and significantly discriminated a poor outcome (area under curve, 0.794; 95% confidence interval, 0.702-0.868) and early neurologic deterioration (area under curve, 0.760; 95% confidence interval, 0.664-0.839) under receiver operating characteristic curve. CONCLUSION High serum S100A12 levels at admission are highly associated with the extent of inflammatory response, severity, a poor functional outcome and early neurologic deterioration in ICH patients, substantializing serum S100A12 as a promising prognostic biomarker for ICH.
Collapse
Affiliation(s)
- Shen-Zhong Qiu
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Guan-Rong Zheng
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Cai-Yan Ma
- Department of Clinical Laboratory, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Bin Chen
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Jian-Jun Huang
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Ge Huang
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Hai Hua
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| |
Collapse
|