1
|
Koizume S, Takahashi T, Miyagi Y. Lipid droplets: a candidate new research field for epithelial ovarian cancer. Front Pharmacol 2024; 15:1437161. [PMID: 39011508 PMCID: PMC11246970 DOI: 10.3389/fphar.2024.1437161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a histological subtype that constitutes approximately 20% of epithelial ovarian cancer cases in Asian countries, but has a relatively low incidence in Western countries. Meanwhile, clear cell renal cell carcinoma (ccRCC) is a major subtype of kidney cancer. OCCC and ccRCC resemble one another histologically and have clear cytoplasmic appearances. Studies have revealed some genetic similarities between OCCC and ccRCC. However, information regarding common biological background factors between these cancers remains scarce. For example, accumulation of cellular lipid droplets was shown to play a crucial role in ccRCC progression, while similar information is lacking for OCCC. In this perspective article, we propose that lipid droplets may be candidates for future exploration to better understand the common biological backgrounds between OCCC and ccRCC, potentially leading to subtype-specific treatment strategies. We further discuss the relationship between poly ADP-ribose polymerase inhibition treatment and lipid metabolism because this therapeutic strategy has attracted considerable attention as a treatment for epithelial ovarian cancer.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tomoko Takahashi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| |
Collapse
|
2
|
Wu D, Xu Z, Shi Z, Li P, lv H, Huang J, Fu D. Screening of Differentially Expressed Iron Death-Related Genes and the Construction of Prognosis Model in Patients with Renal Clear Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4456987. [PMID: 36081434 PMCID: PMC9448526 DOI: 10.1155/2022/4456987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Objective In this study, we used the TCGA database and ICGC database to establish a prognostic model of iron death associated with renal cell carcinoma, which can provide predictive value for the identification of iron death-related genes and clinical treatment of renal clear cell carcinoma. Methods The gene expression profiles and clinical data of renal clear cell carcinoma and normal tissues were obtained in the TCGA database and ICGC database, and the differential genes related to iron death were screened out. The differential genes were screened out by single and multifactor Cox risk regression model. R software, "edge" package (version 4.0), was used to identify the DELs of 551 transcriptional gene samples and 522 clinical samples. The risk prediction model with genes was established to analyze the correlation between the genes in the established model and clinical characteristics, Through the final screening of iron death related genes, it can be used to predict the prognosis of renal clear cell carcinoma and provide advice for clinical targeted therapy. Results Seven iron death differential genes (CLS2, FANCD2, PHKG2, ACSL3, ATP5MC3, CISD1, PEBP1) associated with renal clear cell carcinoma were finally screened and were refer to previous relevant studies. These genes are closely related to iron death and have great value for the prognosis of renal clear cell carcinoma. Conclusion Seven iron death genes can accurately predict the survival of patients with renal clear cell carcinoma.
Collapse
Affiliation(s)
- Ding Wu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhenyu Xu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhan Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Ping Li
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Huichen lv
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jie Huang
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Dian Fu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
3
|
Koizume S, Takahashi T, Nakamura Y, Yoshihara M, Ota Y, Sato S, Tadokoro H, Yokose T, Kato H, Miyagi E, Miyagi Y. Lipophagy-ICAM-1 pathway associated with fatty acid and oxygen deficiencies is involved in poor prognoses of ovarian clear cell carcinoma. Br J Cancer 2022; 127:462-473. [PMID: 35449452 PMCID: PMC9346109 DOI: 10.1038/s41416-022-01808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Serum starvation and hypoxia (SSH) mimics a stress condition in tumours. We have shown that intercellular adhesion molecule-1 (ICAM-1) protein is synergistically expressed in ovarian clear cell carcinoma (CCC) cells under SSH in response to an insufficient supply of fatty acids (FAs). This ICAM-1 expression is responsible for resistance against the lethal condition, thereby promoting tumour growth. However, the underlying mechanisms that link SSH-driven ICAM1 gene expression to impaired FA supply and its clinical relevance are unclear. METHODS The underlying mechanisms of how FA deficiency induces ICAM-1 expression in cooperation with hypoxia were analysed in vitro and in vivo. Clinical significance of CCC cell-derived ICAM-1 and the mechanism associated with the transcriptional synergism were also investigated. RESULTS ICAM-1 expression was mediated through lipophagy-driven lipid droplet degradation, followed by impaired FA-lipid droplet flow. Lipophagy induced ICAM1 expression through stabilisation of NFκB binding to the promoter region via Sam68 and hTERT. Analyses of clinical specimens revealed that expression of ICAM-1 and LC3B, an autophagy marker associated with lipophagy, significantly correlated with poor prognoses of CCC. CONCLUSIONS The lipophagy-ICAM-1 pathway induced under a tumour-like stress conditions contributes to CCC progression and is a potential therapeutic target for this aggressive cancer type.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan. .,Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515, Japan.
| | - Tomoko Takahashi
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Yoshiyasu Nakamura
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Mitsuyo Yoshihara
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Yukihide Ota
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan ,grid.268441.d0000 0001 1033 6139Department of Obstetrics, Gynecology, and Molecular Reproductive Science, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Shinya Sato
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan ,grid.414944.80000 0004 0629 2905Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Hiroko Tadokoro
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Tomoyuki Yokose
- grid.414944.80000 0004 0629 2905Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Hisamori Kato
- grid.414944.80000 0004 0629 2905Department of Gynecology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Etsuko Miyagi
- grid.268441.d0000 0001 1033 6139Department of Obstetrics, Gynecology, and Molecular Reproductive Science, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan. .,Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515, Japan.
| |
Collapse
|
4
|
Sorokin M, Rabushko E, Efimov V, Poddubskaya E, Sekacheva M, Simonov A, Nikitin D, Drobyshev A, Suntsova M, Buzdin A. Experimental and Meta-Analytic Validation of RNA Sequencing Signatures for Predicting Status of Microsatellite Instability. Front Mol Biosci 2021; 8:737821. [PMID: 34888350 PMCID: PMC8650122 DOI: 10.3389/fmolb.2021.737821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Microsatellite instability (MSI) is an important diagnostic and prognostic cancer biomarker. In colorectal, cervical, ovarian, and gastric cancers, it can guide the prescription of chemotherapy and immunotherapy. In laboratory diagnostics of susceptible tumors, MSI is routinely detected by the size of marker polymerase chain reaction products encompassing frequent microsatellite expansion regions. Alternatively, MSI status is screened indirectly by immunohistochemical interrogation of microsatellite binding proteins. RNA sequencing (RNAseq) profiling is an emerging source of data for a wide spectrum of cancer biomarkers. Recently, three RNAseq-based gene signatures were deduced for establishing MSI status in tumor samples. They had 25, 15, and 14 gene products with only one common gene. However, they were developed and tested on the incomplete literature of The Cancer Genome Atlas (TCGA) sampling and never validated experimentally on independent RNAseq samples. In this study, we, for the first time, systematically validated these three RNAseq MSI signatures on the literature colorectal cancer (CRC) (n = 619), endometrial carcinoma (n = 533), gastric cancer (n = 380), uterine carcinosarcoma (n = 55), and esophageal cancer (n = 83) samples and on the set of experimental CRC RNAseq samples (n = 23) for tumors with known MSI status. We found that all three signatures performed well with area under the curve (AUC) ranges of 0.94-1 for the experimental CRCs and 0.94-1 for the TCGA CRC, esophageal cancer, and uterine carcinosarcoma samples. However, for the TCGA endometrial carcinoma and gastric cancer samples, only two signatures were effective with AUC 0.91-0.97, whereas the third signature showed a significantly lower AUC of 0.69-0.88. Software for calculating these MSI signatures using RNAseq data is included.
Collapse
Affiliation(s)
- Maksim Sorokin
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- OmicsWay Corp., Walnut, CA, United States
| | - Elizaveta Rabushko
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Victor Efimov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Oncobox Ltd., Moscow, Russia
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Simonov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Oncobox Ltd., Moscow, Russia
| | - Daniil Nikitin
- Oncobox Ltd., Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Aleksey Drobyshev
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- OmicsWay Corp., Walnut, CA, United States
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Gi T, Yamashita A, Aman M, Kuwahara A, Asada Y, Kawagoe Y, Onishi J, Sameshima H, Sato Y. Tissue factor expression and tumor-infiltrating T lymphocytes in ovarian carcinomas and their association with venous thromboembolism. Pathol Int 2021; 71:261-266. [PMID: 33559251 DOI: 10.1111/pin.13074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ovarian cancer is a known risk factor of venous thromboembolism (VTE). Thrombogenic factor expression and lymphocytic infiltrate have been reported in endometriosis and ovarian cancers. We reviewed 30 cases of ovarian carcinomas (high grade serous carcinoma, 10; endometrioid carcinoma, 10; clear cell carcinoma (CCC), 10) and 16 endometriotic lesions. We immunohistochemically investigated the expressions of tissue factor (TF), podoplanin, P-selectin, and number of CD4 and CD8 positive lymphocytes in cancer tissue and endometriotic lesions, along with their relationship with VTE. The expression of TF was higher in CCC. The TF expression and the number of CD8 positive cells were higher in cancer tissues with VTE than in those without VTE. The podoplanin or P-selectin expression did not differ among histological types or between cases with and without VTE. Our results demonstrated a high TF expression and intraepithelial CD8 cells in CCC, which were associated with VTE. The results suggest that infiltrating lymphocytes may affect TF expression that, in turn, influences VTE.
Collapse
Affiliation(s)
- Toshihiro Gi
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Murasaki Aman
- Department of Diagnostic Pathology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Aya Kuwahara
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Laboratory Center, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasuyuki Kawagoe
- Department of Obstetrics and Gynecology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Junji Onishi
- Department of Obstetrics and Gynecology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Sameshima
- Department of Obstetrics and Gynecology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
6
|
Khan T, Sullivan MA, Gunter JH, Kryza T, Lyons N, He Y, Hooper JD. Revisiting Glycogen in Cancer: A Conspicuous and Targetable Enabler of Malignant Transformation. Front Oncol 2020; 10:592455. [PMID: 33224887 PMCID: PMC7667517 DOI: 10.3389/fonc.2020.592455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Once thought to be exclusively a storage hub for glucose, glycogen is now known to be essential in a range of physiological processes and pathological conditions. Glycogen lies at the nexus of diverse processes that promote malignancy, including proliferation, migration, invasion, and chemoresistance of cancer cells. It is also implicated in processes associated with the tumor microenvironment such as immune cell effector function and crosstalk with cancer-associated fibroblasts to promote metastasis. The enzymes of glycogen metabolism are dysregulated in a wide variety of malignancies, including cancers of the kidney, ovary, lung, bladder, liver, blood, and breast. Understanding and targeting glycogen metabolism in cancer presents a promising but under-explored therapeutic avenue. In this review, we summarize the current literature on the role of glycogen in cancer progression and discuss its potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Tashbib Khan
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mitchell A. Sullivan
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jennifer H. Gunter
- Faculty of Health, Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Thomas Kryza
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Nicholas Lyons
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Yaowu He
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - John D. Hooper
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|