1
|
Yamaguchi H, Miyazaki M. Heterocellular Adhesion in Cancer Invasion and Metastasis: Interactions between Cancer Cells and Cancer-Associated Fibroblasts. Cancers (Basel) 2024; 16:1636. [PMID: 38730588 PMCID: PMC11082996 DOI: 10.3390/cancers16091636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer invasion is a requisite for the most malignant progression of cancer, that is, metastasis. The mechanisms of cancer invasion were originally studied using in vitro cell culture systems, in which cancer cells were cultured using artificial extracellular matrices (ECMs). However, conventional culture systems do not precisely recapitulate in vivo cancer invasion because the phenotypes of cancer cells in tumor tissues are strongly affected by the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the TME and accelerate cancer progression through invasion, metastasis, therapy resistance, and immune suppression. Thus, the reciprocal interactions between CAFs and cancer cells have been extensively studied, leading to the identification of factors that mediate cellular interactions, such as growth factors, cytokines, and extracellular vesicles. In addition, the importance of direct heterocellular adhesion between cancer cells and CAFs in cancer progression has recently been elucidated. In particular, CAFs are directly associated with cancer cells, allowing them to invade the ECM and metastasize to distant organs. In this review, we summarize the recent progress in understanding the molecular and cellular mechanisms of the direct heterocellular interaction in CAF-led cancer invasion and metastasis, with an emphasis on gastric cancer.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| | | |
Collapse
|
2
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y, Bai Y. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 2023; 14:587. [PMID: 37666813 PMCID: PMC10477351 DOI: 10.1038/s41419-023-06110-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China.
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
3
|
Hirata Y, Noorani A, Song S, Wang L, Ajani JA. Early stage gastric adenocarcinoma: clinical and molecular landscapes. Nat Rev Clin Oncol 2023; 20:453-469. [PMID: 37264184 DOI: 10.1038/s41571-023-00767-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Gastric adenocarcinoma, even when diagnosed at an early (localized) disease stage, poses a major health-care burden with cure rates that remain unsatisfactorily low, particularly in Western countries. This lack of progress reflects, among other aspects, the impracticality of early diagnosis, considerable variations in therapeutic approaches that is partly based on regional preferences, and the ingrained heterogeneity of gastric adenocarcinoma cells and their associated tumour microenvironment (TME). Clinical trials have long applied empirical interventions with the assumption that all early stage gastric adenocarcinomas are alike. Despite certain successes, the shortcomings of these approaches can potentially be overcome by targeting the specific molecular subsets of gastric adenocarcinomas identified by genomic and/or multi-omics analyses, including microsatellite instability-high, Epstein-Barr virus-induced, DNA damage repair-deficient, HER2-positive and PD-L1-high subtypes. Future approaches, including the availability of sophisticated vaccines, novel antibody technologies, agents targeting TME components (including fibroblasts, macrophages, cytokines or chemokines, and T cells) and novel immune checkpoint inhibitors, supported by improved tissue-based and blood-based diagnostic assays, seem promising. In this Review, we highlight current knowledge of the molecular and cellular biology of gastric adenocarcinomas, summarize the current approaches to clinical management of the disease, and consider the role of novel management and/or treatment strategies.
Collapse
Affiliation(s)
- Yuki Hirata
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayesha Noorani
- Cancer Ageing and Somatic Mutation Group, Wellcome Sanger Institute, Hinxton, UK
- Cambridge Oesophago-gastric Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Zhang K, Yue B, Duan X, Chen W, Dai X, Chen Y, Li X, Lu J. Joint analysis identified FAP as a prognostic and diagnostic biomarker correlated immune infiltration in gastric cancer. Pathol Res Pract 2023; 245:154462. [PMID: 37068372 DOI: 10.1016/j.prp.2023.154462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Gastric cancer is one of the most malignant types of cancer in the digestive system because of its high incidence and mortality. There is a notable association between gastric cancer progression and the level and sort of immune cells infiltrating the tumor microenvironment. First, 41 up-regulated differentially expressed genes (DEGs) and 91 down-regulated DEGs were identified from the Gene Expression Omnibus (GEO) database. Among the 21 core genes, prognosis biomarkers FAP, ASPN and CTHRC1 were identified for further study via Kaplan-Meier Plotter, with FAP having the highest prognostic value among them. In addition, the ROC curves of FAP (AUC=0.992), ASPN (AUC=0.955) and CTHRC1 (AUC=0.983) also showed high diagnostic value. Then the expression and mutation levels of the biomarkers were verified by GEPIA and cBioPortal. Their high expression levels were closely correlated to the clinical stages and metastasis status of gastric cancer. Furthermore, their expression was strongly relevant to immune infiltration and macrophage marker levels. In drug response analysis, gastric cancer cell lines with overexpression of FAP and ASPN were more sensitive to PI3K and MET inhibitors, respectively. Importantly, the meta-analysis showed that FAP had an overall positive rate of 68 % (63-73 %, 95 % CI; n = 382) and the patients with high expression of FAP showed a poor prognosis in terms of OS (HR=1.82, 1.33-2.48, 95 % CI) in gastric cancer. In short, FAP, ASPN and CTHRC1 were identified as potential prognostic and diagnostic biomarkers related with immunity and might be effective therapeutic targets of gastric cancer, and the significance of FAP for the prognosis was further assessed by meta-analysis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Bingtong Yue
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
5
|
Dong Y, Zhang C, Zhang Q, Li Z, Wang Y, Yan J, Wu G, Qiu L, Zhu Z, Wang B, Gu H, Zhang Y. Identification of nanoparticle-mediated siRNA-ASPN as a key gene target in the treatment of keloids. Front Bioeng Biotechnol 2022; 10:1025546. [PMID: 36394011 PMCID: PMC9649824 DOI: 10.3389/fbioe.2022.1025546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Keloid, also known as connective tissue hyperplasia, is a benign proliferative disorder with a global distribution. The available therapeutic interventions are steroid injections, surgical removal of keloids, radiotherapy, compression therapy, the application of cryosurgery, and many other methods. Objectives: Existing treatments or approaches for keloids may lead to similar or even larger lesions at the site of keloid excision, leading to a high recurrence rate. Therefore, this study aims at identifying a new gene-based therapy for the treatment of keloids. Methods: An ASPN-siRNA/nanoparticle combination (si-ASPN) and a negative siRNA/nanoparticle complex (NC) was developed on the basis of bioinformatics studies and used in vitro and in vivo experiments. Results: The results showed a strong correlation between the development of keloids and high expression of ASPN protein. With the expression of ASPN protein greatly reduced in keloid fibroblasts and nude mice allografts after treatment with si-ASPN, the collagen and fibroblasts were also uniform, thinner, parallel and regular. Conclusion: All the above experimental results suggest that keloid and ASPN are closely related and both fibroblast growth and metabolism of keloid are inhibited after silencing ASPN. Therefore, ASPN-siRNA delivered via nanoparticles can serve as a novel intervention therapy for the treatment of keloids.
Collapse
Affiliation(s)
- Yipeng Dong
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Chuwei Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Qingrong Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Burn Research, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zihan Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yixiao Wang
- Medical School of Nantong University, Nantong, China
| | - Jun Yan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Gujie Wu
- Medical School of Nantong University, Nantong, China
| | - Ling Qiu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Zhihan Zhu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Bolin Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Haiying Gu
- Institute of Analytical Chemistry for Life Science, Nantong University, Nantong, China
- School of Public Health, Nantong University, Nantong, China
- *Correspondence: Yi Zhang, ; Haiying Gu,
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yi Zhang, ; Haiying Gu,
| |
Collapse
|