1
|
Xia Z, He Y, Korpelainen H, Niinemets Ü, Li C. Allelochemicals and soil microorganisms jointly mediate sex-specific belowground interactions in dioecious Populus cathayana. THE NEW PHYTOLOGIST 2023; 240:1519-1533. [PMID: 37615210 DOI: 10.1111/nph.19224] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Little is known about how sex differences in root zone characteristics, such as contents of allelochemicals and soil microbial composition, mediate intra- and intersexual interactions in dioecious plants. We examined the processes and mechanisms of sex-specific belowground interactions mediated by allelochemicals and soil microorganisms in Populus cathayana females and males in replicated 30-yr-old experimental stands in situ and in a series of controlled experiments. Female roots released a greater amount and more diverse phenolic allelochemicals into the soil environment, resulting in growth inhibition of the same sex neighbors and deterioration of the community of soil microorganisms. When grown with males, the growth of females was consistently enhanced, especially the root growth. Compared with female monocultures, the presence of males reduced the total phenolic accumulation in the soil, resulting in a shift from allelopathic inhibition to chemical facilitation. This association was enhanced by a favorable soil bacterial community and increased bacterial diversity, and it induced changes in the orientation of female roots. Our study highlighted a novel mechanism that enhances female performance by males through alterations in the allelochemical content and soil microbial composition. The possibility to improve productivity by chemical mediation provides novel opportunities for managing plantations of dioecious plants.
Collapse
Affiliation(s)
- Zhichao Xia
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yue He
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
He Y, Xu H, Liu H, Luo M, Chu C, Fang S. Sexual competition and kin recognition co-shape the traits of neighboring dioecious Diospyros morrisiana seedlings. HORTICULTURE RESEARCH 2021; 8:162. [PMID: 34193863 PMCID: PMC8245536 DOI: 10.1038/s41438-021-00598-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 06/08/2023]
Abstract
Plants respond differently to the identity of their neighbors, such as their sex and kinship, showing plasticity in their traits. However, how the functional traits of dioecious trees are shaped by the recognition of neighbors with different sex and kinship remains unknown. In this study, we set up an experiment with different kin/nonkin and inter/intrasexual combinations for a dioecious tree species, Diospyros morrisiana. The results showed that plants grew better with nonkin and intrasexual neighbors than with kin and intersexual neighbors. Kin combinations had significantly shorter root length in the resource-overlapping zone than nonkin combinations, suggesting that kin tended to reduce competition by adjusting their root distribution, especially among female siblings. Our study suggested that the seedling growth of D. morrisiana was affected by both the relatedness and sexual identity of neighboring plants. Further analysis by gas chromatography-mass spectrometry showed that the root exudate composition of female seedlings differed from that of male seedlings. Root exudates may play important roles in sex competition in dioecious plants. This study indicates that sex-specific competition and kin recognition interact and co-shape the traits of D. morrisiana seedlings, while intrasexual and nonkin neighbors facilitate the growth of seedlings. Our study implies that kin- and sex-related interactions depend on different mechanisms, kin selection, and niche partitioning, respectively. These results are critical for understanding how species coexist and how traits are shaped in nature.
Collapse
Affiliation(s)
- Yulin He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Hanlun Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Meiling Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Suqin Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
3
|
Liu M, Wang Y, Liu X, Korpelainen H, Li C. Intra- and intersexual interactions shape microbial community dynamics in the rhizosphere of Populus cathayana females and males exposed to excess Zn. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123783. [PMID: 33254793 DOI: 10.1016/j.jhazmat.2020.123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/12/2023]
Abstract
In this study, we intended to investigate the responses of rhizospheric bacterial communities of Populus cathayana to excess Zn under different planting patterns. The results suggested that intersexual and intrasexual interactions strongly affect plant growth and Zn extraction in both sexes, as well as rhizosphere-associated bacterial community structures. Females had a higher capacity of Zn accumulation and translocation than males under all planting patterns. Males had lower Zn accumulation and translocation under intersexual than under intrasexual interaction; the contrary was true for females. Females harbored abundant Streptomyces and Nocardioides in their rhizosphere, similarly to males under intersexual interaction, but differed from single-sex males under excess Zn. Conversely, intersexual interaction increased the abundance of key taxa Actinomycetales and Betaproteobacteria in both sexes exposed to excess Zn. Males improved the female rhizospheric microenvironment by increasing the abundance of some key tolerance taxa of Chloroflexi, Proteobacteria and Actinobacteria in both sexes under excess Zn in intersexual interaction. These results indicated that the sex of neighboring plants affected sexual differences in the choice of specific bacterial colonizations for phytoextraction and tolerance to Zn-contaminated soils, which might regulate the spatial segregation and phytoremediation potential of P. cathayana females and males under heavy metal contaminated soils.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuting Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiucheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
4
|
The Influence of Arbuscular Mycorrhizal Fungi on Plant Reproduction. J Chem Ecol 2020; 46:707-721. [PMID: 32583094 DOI: 10.1007/s10886-020-01192-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/17/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi can influence all components of plant reproduction including pollen delivery, pollen germination, pollen tube growth, fertilization, and seed germination. AM fungi associate with plant roots, uptake nutrients, and prime plants for faster defense responses. Our literature review first identified four testable hypotheses describing how AM fungi could alter pollen delivery: (1) We hypothesize AM fungi promote floral display size. The influence of AM fungi on flower size and number is supported by literature, however there are no studies on floral color. (2) We hypothesize AM fungi promote pollen and nectar quality and quantity, and, as reported before, AM fungi promote male fitness over female fitness. (3) We hypothesize AM fungi promote both earlier and longer flowering times, but we found no consistent trend in the data for earlier or later or longer flowering times. (4) We hypothesize AM fungi alter floral secondary chemistry and VOCs, and find there is clear evidence for the alteration of floral chemistry but little data on VOCs. Second, we focus on how AM fungi could alter pollen germination, pollen tube growth, and fertilization, and present three testable hypotheses. We found evidence that AM fungi influence pollen germination and pollen tube growth, production of seeds, and seed germination. However, while most of these influences are positive they are not conclusive, because studies have been conducted in small numbers of systems and groups. Therefore, we conclude that the majority of research to date may not be measuring the influence of AM fungi on the most important components of plant reproduction: pollen germination, pollen tube growth, fertilization, and seed germination.
Collapse
|
5
|
Xia Z, He Y, Yu L, Lv R, Korpelainen H, Li C. Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution. THE NEW PHYTOLOGIST 2020; 225:782-792. [PMID: 31487045 DOI: 10.1111/nph.16170] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Soil phosphorus (P) availability and its distribution influence plant growth and productivity, but how they affect the growth dynamics and sex-specific P acquisition strategies of dioecious plant species is poorly understood. In this study, the impact of soil P availability and its distribution on dioecious Populus cathayana was characterized. P. cathayana males and females were grown under three levels of P supply, and with homogeneous or heterogeneous P distribution. Females had a greater total root length, specific root length (SRL), biomass and foliar P concentration under high P supply. Under P deficiency, males had a smaller root system than females but a greater exudation of soil acid phosphatase, and a higher colonization rate and arbuscular mycorrhizal hyphal biomass, suggesting a better capacity to mine P and a stronger association with arbuscular mycorrhizal fungi to forage P. Heterogeneous P distribution enhanced growth and root length density (RLD) in females. Female root proliferation in P-rich patches was related to increased foliar P assimilation. Localized P application for increasing P availability did not enhance the biomass accumulation and the morphological plasticity of roots in males, but it raised hyphal biomass. The findings herein indicate that sex-specific strategies in P acquisition relate to root morphology, root exudation and mycorrhizal symbioses, and they may contribute to sex-specific resource utilization patterns and niche segregation.
Collapse
Affiliation(s)
- Zhichao Xia
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Yue He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Lei Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Rubing Lv
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| |
Collapse
|
6
|
Wu Q, Tang Y, Dong T, Liao Y, Li D, He X, Xu X. Additional AM Fungi Inoculation Increase Populus cathayana Intersexual Competition. FRONTIERS IN PLANT SCIENCE 2018; 9:607. [PMID: 29868065 PMCID: PMC5951968 DOI: 10.3389/fpls.2018.00607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/17/2018] [Indexed: 05/14/2023]
Abstract
Sex-specific responses to mycorrhiza have been reported in dioecious plant species, but little attention has been paid to the influence of arbuscular mycorrhizal (AM) fungi on competitive ability under intersexual competition. To further address whether this competition is affected by an additional AM fungi supply, Populus cathayana saplings were chosen and subjected to two mycorrhizal treatments [inoculated and non-inoculated (control) with an additional AM fungi Funneliformis mosseae] while growing with the opposite sex for 3 months. Compared with the control, the additional AM fungi inoculation induced P. cathayana saplings to exhibit significant sexual differences in root structure and nutrient uptake (e.g., cortical layer, cross-section area, radius of root tips, and N, K, and Mg content), and enlarged sexual differences in morphology and biomass accumulation (e.g., leaf number increment, shoot height increment, total leaf area, total specific root length, stem dry mass, leaf dry mass, and total dry mass). Meanwhile, inoculated females presented higher values in most of these traits mentioned above than males under intersexual competition. Therefore, we conclude that the intersexual competition can be increased by an additional AM fungi supply, with females gaining more symbiosis-mediated benefits than males.
Collapse
Affiliation(s)
- Qiuping Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Yun Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
- Institute of Plant Adaptation and Utilization in Southwest Mountain, China West Normal University, Nanchong, China
| | - Yongmei Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Dadong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Xinhua He
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Beibei, China
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Egelkraut D, Kardol P, De Long JR, Olofsson J. The role of plant–soil feedbacks in stabilizing a reindeer‐induced vegetation shift in subarctic tundra. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dagmar Egelkraut
- Department of Ecology and Environmental ScienceUmeå University Umeå Sweden
| | - Paul Kardol
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences Umeå Sweden
| | - Jonathan R. De Long
- Department of Terrestrial EcologyNetherlands Institute of Ecology Wageningen The Netherlands
| | - Johan Olofsson
- Department of Ecology and Environmental ScienceUmeå University Umeå Sweden
| |
Collapse
|
8
|
Land-use change impact on mycorrhizal symbiosis in female and male plants of wild Carica papaya (Caricaceae). Symbiosis 2018. [DOI: 10.1007/s13199-018-0549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|