1
|
Ohashi K, Jürgens A, Thomson JD. Trade-off mitigation: a conceptual framework for understanding floral adaptation in multispecies interactions. Biol Rev Camb Philos Soc 2021; 96:2258-2280. [PMID: 34096158 PMCID: PMC8518848 DOI: 10.1111/brv.12754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
Explanations of floral adaptation to diverse pollinator faunas have often invoked visitor‐mediated trade‐offs in which no intermediate, generalized floral phenotype is optimal for pollination success, i.e. fitness valleys are created. In such cases, plant species are expected to specialize on particular groups of flower visitors. Contrary to this expectation, it is commonly observed that flowers interact with various groups of visitors, while at the same time maintaining distinct phenotypes among ecotypes, subspecies, or congeners. This apparent paradox may be due to a gap in our understanding of how visitor‐mediated trade‐offs could affect floral adaptation. Here we provide a conceptual framework for analysing visitor‐mediated trade‐offs with the hope of stimulating empirical and theoretical studies to fill this gap. We propose two types of visitor‐mediated trade‐offs to address negative correlations among fitness contributions of different visitors: visitor‐mediated phenotypic trade‐offs (phenotypic trade‐offs) and visitor‐mediated opportunity trade‐offs (opportunity trade‐offs). Phenotypic trade‐offs occur when different groups of visitors impose conflicting selection pressures on a floral trait. By contrast, opportunity trade‐offs emerge only when some visitors’ actions (e.g. pollen collection) remove opportunities for fitness contribution by more beneficial visitors. Previous studies have observed disruptive selection due to phenotypic trade‐offs less often than expected. In addition to existing explanations, we propose that some flowers have achieved ‘adaptive generalization’ by evolving features to avoid or eliminate the fitness valleys that phenotypic trade‐offs tend to produce. The literature suggests a variety of pathways to such ‘trade‐off mitigation’. Trade‐off mitigation may also evolve as an adaptation to opportunity trade‐offs. We argue that active exclusion, or floral specialization, can be viewed as a trade‐off mitigation, occurring only when flowers cannot otherwise avoid strong opportunity trade‐offs. These considerations suggest that an evolutionary strategy for trade‐off mitigation is achieved often by acquiring novel combinations of traits. Thus, phenotypic diversification of flowers through convergent evolution of certain trait combinations may have been enhanced not only through adaptive specialization for particular visitors, but also through adaptive generalization for particular visitor communities. Explorations of how visitor‐mediated trade‐offs explain the recurrent patterns of floral phenotypes may help reconcile the long‐lasting controversy on the validity of pollination syndromes.
Collapse
Affiliation(s)
- Kazuharu Ohashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Department of Biology, Chemical Plant Ecology, Technische Universität Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Andreas Jürgens
- Department of Biology, Chemical Plant Ecology, Technische Universität Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - James D Thomson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
2
|
Roguz K, Hill L, Roguz A, Zych M. Evolution of Bird and Insect Flower Traits in Fritillaria L. (Liliaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:656783. [PMID: 33868353 PMCID: PMC8044542 DOI: 10.3389/fpls.2021.656783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/03/2021] [Indexed: 05/27/2023]
Abstract
Pollinators are often perceived as a primary selective agent influencing flower traits such as colour, size, and nectar properties. The genus Fritillaria L. (Liliaceae), comprising approximately 150 species, is described as generally insect pollinated. However, there are at least three exceptions: two hummingbird-pollinated North American species and one passerine-pollinated Asian species. Despite this variation in pollination, little is known about flower traits that may accompany this shift in fritillaries. In this study, we aimed to assess the attractiveness of the floral traits for (new) pollinators and track the evolution of flowers traits in the context of a shift in the principal pollinator. Therefore, we studied 14 flower traits related to the pollination in 60 Fritillaria species and traced the evolutionary trajectory of these traits. We used a phylogenetic tree of the genus, based on five DNA markers (matK, rpl16, and rbcL, 18S, and ITS) to reconstruct the ancestral state of studied flower traits. The results show that in bird-pollinated species several new traits evolved. For example, flower colouration, nectar sugar, and amino acid concentration and composition fulfil the criteria of ornithophilous flowers, although flower traits do not exclude insect pollinators in bird-pollinated fritillaries. Interestingly, we recorded potential reversals from bird to insect pollination. Our analysis, showing a broad study of flower traits among closely related species in the context of pollinator shift, serves as a starting point for future work exploring the genetic and physiological mechanisms controlling flower traits in the genus Fritillaria.
Collapse
Affiliation(s)
- Katarzyna Roguz
- Botanic Garden, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | - Marcin Zych
- Botanic Garden, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Roddy AB, Martínez-Perez C, Teixido AL, Cornelissen TG, Olson ME, Oliveira RS, Silveira FAO. Towards the flower economics spectrum. THE NEW PHYTOLOGIST 2021; 229:665-672. [PMID: 32697862 DOI: 10.1111/nph.16823] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Understanding how floral traits affect reproduction is key for understanding genetic diversity, speciation, and trait evolution in the face of global changes and pollinator decline. However, there has not yet been a unified framework to characterize the major trade-offs and axes of floral trait variation. Here, we propose the development of a floral economics spectrum (FES) that incorporates the multiple pathways by which floral traits can be shaped by multiple agents of selection acting on multiple flower functions. For example, while pollinator-mediated selection has been considered the primary factor affecting flower evolution, selection by nonpollinator agents can reinforce or oppose pollinator selection, and, therefore, affect floral trait variation. In addition to pollinators, the FES should consider nonpollinator biotic agents and floral physiological costs, broadening the drivers of floral traits beyond pollinators. We discuss how coordinated evolution and trade-offs among floral traits and between floral and vegetative traits may influence the distribution of floral traits across biomes and lineages, thereby influencing organismal evolution and community assembly.
Collapse
Affiliation(s)
- Adam B Roddy
- School of the Environment, Yale University, 370 Prospect St, New Haven, CT, 06511, USA
| | - Cecilia Martínez-Perez
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Alberto L Teixido
- Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Cuiabá, 78060-634, Brazil
| | - Tatiana G Cornelissen
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, 13083-862, Brazil
| | - Fernando A O Silveira
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
4
|
Dellinger AS. Pollination syndromes in the 21 st century: where do we stand and where may we go? THE NEW PHYTOLOGIST 2020; 228:1193-1213. [PMID: 33460152 DOI: 10.1111/nph.16793] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/31/2020] [Indexed: 06/12/2023]
Abstract
Pollination syndromes, recurring suites of floral traits appearing in connection with specific functional pollinator groups, have served for decades to organise floral diversity under a functional-ecological perspective. Some potential caveats, such as over-simplification of complex plant-animal interactions or lack of empirical observations, have been identified and discussed in recent years. Which of these caveats do indeed cause problems, which have been solved and where do future possibilities lie? I address these questions in a review of the pollination-syndrome literature of 2010 to 2019. I show that the majority of studies was based on detailed empirical pollinator observations and could reliably predict pollinators based on a few floral traits such as colour, shape or reward. Some traits (i.e. colour) were less reliable in predicting pollinators than others (i.e. reward, corolla width), however. I stress that future studies should consider floral traits beyond those traditionally recorded to expand our understanding of mechanisms of floral evolution. I discuss statistical methods suitable for objectively analysing the interplay of system-specific evolutionary constraints, pollinator-mediated selection and adaptive trade-offs at microecological and macroecological scales. I exemplify my arguments on an empirical dataset of floral traits of a neotropical plant radiation in the family Melastomataceae.
Collapse
|
5
|
Wang X, Wen M, Qian X, Pei N, Zhang D. Plants are visited by more pollinator species than pollination syndromes predicted in an oceanic island community. Sci Rep 2020; 10:13918. [PMID: 32811900 PMCID: PMC7434763 DOI: 10.1038/s41598-020-70954-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
The pollination syndrome concept has provided powerful utility in understanding the evolution and adaptation of floral traits. However, the utility of this conception has been questioned on the grounds that flowers usually attract a broader spectrum of visitors than one might expect. Furthermore, the relationship between plant specialization and floral traits is poorly understood. Here, we examined the applicability of using the pollination syndrome to predict the pollinators of plants on Yongxing Island. We used the species-level specialization of pollination networks to compare the difference of plant ecological specialization among floral traits. The result of full model was not significant, indicating that floral traits did not affect the pollinator functional groups. The five floral traits explained only 22.5% of the pollinator's visitation preference. Our results showed that plants were visited by more pollinator species than pollination syndromes predicted. Plants with restrictive flowers showed higher specialization than those with unrestrictive flowers, while other floral traits exhibited no significant effect on plant specialization. Generalized pollination system on oceanic island might influence the predictive accuracy of pollination syndromes and the relationship between floral traits and plant ecological specialization. Our findings highlighted the utility and limitations of pollination syndromes concept in oceanic island communities.
Collapse
Affiliation(s)
- Xiangping Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Meihong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Nancai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China.
| |
Collapse
|
6
|
Fernández-Mazuecos M, Blanco-Pastor JL, Juan A, Carnicero P, Forrest A, Alarcón M, Vargas P, Glover BJ. Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. THE NEW PHYTOLOGIST 2019; 222:1123-1138. [PMID: 30570752 DOI: 10.1111/nph.15654] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/11/2018] [Indexed: 05/27/2023]
Abstract
Floral nectar spurs are widely considered a key innovation promoting diversification in angiosperms by means of pollinator shifts. We investigated the macroevolutionary dynamics of nectar spurs in the tribe Antirrhineae (Plantaginaceae), which contains 29 genera and 300-400 species (70-80% spurred). The effect of nectar spurs on diversification was tested, with special focus on Linaria, the genus with the highest number of species. We generated the most comprehensive phylogeny of Antirrhineae to date and reconstructed the evolution of nectar spurs. Diversification rate heterogeneity was investigated using trait-dependent and trait-independent methods, and accounting for taxonomic uncertainty. The association between changes in spur length and speciation was examined within Linaria using model testing and ancestral state reconstructions. We inferred four independent acquisitions of nectar spurs. Diversification analyses revealed that nectar spurs are loosely associated with increased diversification rates. Detected rate shifts were delayed by 5-15 Myr with respect to the acquisition of the trait. Active evolution of spur length, fitting a speciational model, was inferred in Linaria, which is consistent with a scenario of pollinator shifts driving diversification. Nectar spurs played a role in diversification of the Antirrhineae, but diversification dynamics can only be fully explained by the complex interaction of multiple biotic and abiotic factors.
Collapse
Affiliation(s)
- Mario Fernández-Mazuecos
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - José Luis Blanco-Pastor
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
- INRA, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), 86600, Lusignan, France
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos Naturales (dCARN) & Instituto de la Biodiversidad (CIBIO), Universidad de Alicante, PO Box 99, 03080, Alicante, Spain
| | - Pau Carnicero
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alan Forrest
- Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Marisa Alarcón
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, 08038, Barcelona, Spain
| | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|