1
|
Earley TS, Feiner N, Alvarez MF, Coolon JD, Sultan SE. The relative impact of parental and current environment on plant transcriptomes depends on type of stress and genotype. Proc Biol Sci 2023; 290:20230824. [PMID: 37752834 PMCID: PMC10523085 DOI: 10.1098/rspb.2023.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Through developmental plasticity, an individual organism integrates influences from its immediate environment with those due to the environment of its parents. While both effects on phenotypes are well documented, their relative impact has been little studied in natural systems, especially at the level of gene expression. We examined this issue in four genotypes of the annual plant Persicaria maculosa by varying two key resources-light and soil moisture-in both generations. Transcriptomic analyses showed that the relative effects of parent and offspring environment on gene expression (i.e. the number of differentially expressed transcripts, DETs) varied both for the two types of resource stress and among genotypes. For light, immediate environment induced more DETs than parental environment for all genotypes, although the precise proportion of parental versus immediate DETs varied among genotypes. By contrast, the relative effect of soil moisture varied dramatically among genotypes, from 8-fold more DETs due to parental than immediate conditions to 10-fold fewer. These findings provide evidence at the transcriptomic level that the relative impacts of parental and immediate environment on the developing organism may depend on the environmental factor and vary strongly among genotypes, providing potential for the interplay of these developmental influences to evolve.
Collapse
Affiliation(s)
- Timothy S. Earley
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | | | - Mariano F. Alvarez
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D. Coolon
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Sonia E. Sultan
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
2
|
Wang Y, Wang J, Chen D, Hui Z, Hu X. Shade Increased Seed Yield and Quality of Incarvillea sinensis var. przewalskii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2934. [PMID: 37631146 PMCID: PMC10459102 DOI: 10.3390/plants12162934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Incarvillea sinensis var. przewalskii has attracted great attention because of the anticancer value of its alkaloids and the potential use of the species for ecological restoration. However, the scarcity of high-quality seeds has significantly hindered the cultivation and efficient utilization of this species. Understanding how seeds respond to maternal environmental conditions is crucial for developing high-yield and top-notch seed accessions, but the available knowledge in this area is limited. Here, we determined the effect of shading treatments on seed development, seed quality, and yield. Compared to the control, shade significantly increased the seed germination rate and 1000-seed weight by 29.2% and 25.6%, respectively. Regardless of light conditions, the seed germination rate and 1000-seed weight decreased by 7.13% and 37.5%, respectively, as the fruit positioned from base to apical. The seed yield per plant was 27.9% higher under shade than under the control treatment. The structural equation model showed that shade promoted seed yield through increasing flowers per reproductive branch and seed numbers per capsule. These findings suggest that adjusting shading conditions and optimizing inflorescence development can lead to high-yield and high-quality seeds. Additionally, prioritizing the number of flowers per reproductive branch and seeds per capsule in breeding programs can further enhance the seed yield of I. sinensis var. przewalskii.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou 730000, China; (Y.W.); (D.C.); (Z.H.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou 730000, China; (Y.W.); (D.C.); (Z.H.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dali Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou 730000, China; (Y.W.); (D.C.); (Z.H.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhenning Hui
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou 730000, China; (Y.W.); (D.C.); (Z.H.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiaowen Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou 730000, China; (Y.W.); (D.C.); (Z.H.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Differential effects of transgenerational plasticity on morphological and photosynthetic properties between an invasive plant and its congeneric native one. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Wang L, Chandrasekaran U, Luo X, Wei S, Shu K. Parental Shading Regulates Subsequent Seed Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:748760. [PMID: 34819940 PMCID: PMC8606882 DOI: 10.3389/fpls.2021.748760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | | | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Shaowei Wei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| |
Collapse
|
5
|
Baker BH, Sultan SE, Lopez-Ichikawa M, Waterman R. Transgenerational effects of parental light environment on progeny competitive performance and lifetime fitness. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180182. [PMID: 30966959 DOI: 10.1098/rstb.2018.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plant and animal parents may respond to environmental conditions such as resource stress by altering traits of their offspring via heritable non-genetic effects. While such transgenerational plasticity can result in progeny phenotypes that are functionally pre-adapted to the inducing environment, it is unclear whether such parental effects measurably enhance the adult competitive success and lifetime reproductive output of progeny, and whether they may also adversely affect fitness if offspring encounter contrasting conditions. In glasshouse experiments with inbred genotypes of the annual plant Polygonum persicaria, we tested the effects of parental shade versus sun on (a) competitive performance of progeny in shade, and (b) lifetime reproductive fitness of progeny in three contrasting treatments. Shaded parents produced offspring with increased fitness in shade despite competition, as well as greater competitive impact on plant neighbours. Inherited effects of parental light conditions also significantly altered lifetime fitness: parental shade increased reproductive output for progeny in neighbour and understorey shade, but decreased fitness for progeny in sunny, dry conditions. Along with these substantial adaptive and maladaptive transgenerational effects, results show complex interactions between genotypes, parent environment and progeny conditions that underscore the role of environmental variability and change in shaping future adaptive potential. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Brennan H Baker
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| | - Sonia E Sultan
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| | | | - Robin Waterman
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| |
Collapse
|
6
|
Elzenga JTM, Bekker RM, Pritchard HW. Maximising the use of native seeds in restoration projects. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:377-379. [PMID: 30977290 PMCID: PMC6594131 DOI: 10.1111/plb.12984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- J. T. M. Elzenga
- Ecophysiology of PlantsGelifes, Groningen UniversityGroningenthe Netherlands
| | - R. M. Bekker
- Het Natuurloket/BIJ12 Toernooiveld 1Nijmegenthe Netherlands
| | - H. W. Pritchard
- Department of Comparative Plant and Fungal BiologyWellcome Trust Millennium Building Royal Botanic GardensKew, Wakehurst PlaceArdingly, West SussexUK
| |
Collapse
|
7
|
Baker BH, Berg LJ, Sultan SE. Context-Dependent Developmental Effects of Parental Shade Versus Sun Are Mediated by DNA Methylation. FRONTIERS IN PLANT SCIENCE 2018; 9:1251. [PMID: 30210520 PMCID: PMC6119717 DOI: 10.3389/fpls.2018.01251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/06/2018] [Indexed: 05/12/2023]
Abstract
Parental environment influences progeny development in numerous plant and animal systems. Such inherited environmental effects may alter offspring phenotypes in a consistent way, for instance when resource-deprived parents produce low quality offspring due to reduced maternal provisioning. However, because development of individual organisms is guided by both inherited and immediate environmental cues, parental conditions may have different effects depending on progeny environment. Such context-dependent transgenerational plasticity suggests a mechanism of environmental inheritance that can precisely interact with immediate response pathways, such as epigenetic modification. We show that parental light environment (shade versus sun) resulted in context-dependent effects on seedling development in a common annual plant, and that these effects were mediated by DNA methylation. We grew replicate parents of five highly inbred Polygonum persicaria genotypes in glasshouse shade versus sun and, in a fully factorial design, measured ecologically important traits of their isogenic seedling offspring in both environments. Compared to the offspring of sun-grown parents, the offspring of shade-grown parents produced leaves with greater mean and specific leaf area, and had higher total leaf area and biomass. These shade-adaptive effects of parental shade were pronounced and highly significant for seedlings growing in shade, but slight and generally non-significant for seedlings growing in sun. Based on both regression and covariate analysis, inherited effects of parental shade were not mediated by changes to seed provisioning. To test for a role of DNA methylation, we exposed replicate offspring of isogenic shaded and fully insolated parents to either the demethylating agent zebularine or to control conditions during germination, then raised them in simulated growth chamber shade. Partial demethylation of progeny DNA had no phenotypic effect on offspring of shaded parents, but caused offspring of sun-grown parents to develop as if their parents had been shaded, with larger leaves and greater total canopy area and biomass. These results contribute to the increasing body of evidence that DNA methylation can mediate transgenerational environmental effects, and show that such effects may contribute to nuanced developmental interactions between parental and immediate environments.
Collapse
|