Tibbett M, Daws MI, Ryan MH. Phosphorus uptake and toxicity are delimited by mycorrhizal symbiosis in P-sensitive
Eucalyptus marginata but not in P-tolerant
Acacia celastrifolia.
AOB PLANTS 2022;
14:plac037. [PMID:
36196393 PMCID:
PMC9521482 DOI:
10.1093/aobpla/plac037]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/15/2022] [Indexed: 05/31/2023]
Abstract
Many plant species from regions with ancient, highly weathered nutrient-depleted soils have specialized adaptations for acquiring phosphorus (P) and are sensitive to excess P supply. Mycorrhizal associations may regulate P uptake at high external P concentrations, potentially reducing P toxicity. We predicted that excess P application will negatively impact species from the nutrient-depleted Jarrah forest of Western Australia and that mycorrhizal inoculation will reduce P toxicity by regulating P uptake. For seedlings of the N2-fixing legume Acacia celastrifolia and the tree species Eucalyptus marginata, we measured growth at P concentrations of 0-90 mg kg-1 soil and in relation to inoculation with the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis. Non-inoculated A. celastrifolia maintained leaf P concentrations at <2 mg g-1 dry mass (DM) across the range of external P concentrations. However, for non-inoculated E. marginata, as external P concentrations increased, leaf P also increased, reaching >9 mg g-1 DM at 30 mg P kg-1 soil. Acacia celastrifolia DM increased with increasing external P concentrations, while E. marginata DM was maximal at 15 mg P kg-1 soil, declining at higher external P concentrations. Neither DM nor leaf P of A. celastrifolia was affected by inoculation with AMF. For E. marginata, even at 90 mg P kg-1 soil, inoculation with AMF resulted in leaf P remaining <1 mg g-1 DM, and DM being maintained. These data strengthen the evidence base that AMF may not only facilitate P uptake at low external P concentrations, but are also important for moderating P uptake at elevated external P concentrations and maintaining plant P concentrations within a relatively narrow concentration range.
Collapse